英日機械翻訳における速読支援のための日本語生成

\author{
九津見 毅 奥西 稔幸 佐田 いち子 シャープ株式会社情報商品開発研究所 \｛kutsumi，okunishi，sata\}@isl.nara.sharp.co.jp

}

1 はじめに

現在の英日機械翻訳システムの多くは，一文単位で解析し翻訳処理をするものであり，文より小さい句や節をまとまりとして解析•生成するようにはなってい ない。だが，現状の翻訳システムでは，英語と日本語 のように語順が大きく異なる言語間で，係り受けの複雑な入力文が入力されると，たとえ正しく構文解析•生成しても，論理的に間違ってはいないが読みにくい日本語文が出力されるととが多い。

昨今，低価格の英日機械翻訳システムが普及し始め ているが，その主な使われ方をみると，精訳を得るの が目的とんらよりも，英文読解を支援するシステムと しての利用が多くみられる。

そのよらな利用法を想定した，訳文を英文に添付し て出すといら表示方法の翻訳システムが出現している が，そのよらな出力形態を採用するなら，それにふさ わしん日本語を出すととが必要であると著者らは考え る。んらなれば英語の語順に近い日本語であるが，日本語だけを単独で読んでも不自然でないととがもちろ ん望ましい。

このよらな目的のために著者らが実用化したのが，原文を適当な単位で切り分けて，それに対して訳を付 ける翻訳システムである。

2 システムの概要

図1は著者らが採用している英日機械翻訳システ ムの翻訳エンジンのブロック図である。とのシステム をベースとして，原文を適当な単位（便宜上「フレー ズ」とよぶ）で切り分け，そらして定めた各々のフレー ズに対する訳（「フレーズ訳」とよぶ）を生成するモ ジュールを，このシステムの最終段階である「日本語生成」部に付加したものが，本稿で紹介する翻訳シス テムである。

たとえば，
In addition to sequential files，the second

$\begin{array}{l\|} \hline \text { 英単栗 } \\ \text { 番号 } \\ \hline \end{array}$	英単雼	対応する駅文単語番号	$\boldsymbol{l} \begin{aligned} & \text { 対応 } \\ & \text { 関係 } \end{aligned}$	䛊文単響番号	知文単鿉	対応する英単語番号
1	In	2		1	逐次ファイル	4
2	addition	2	4	2	に加えて	1
3	to	2	7	3	，	なし
4	sequential	1	V	4	シャープ－BASIC	12
5	files，	1	）	5	によって	11
6	the	7	V	6	使われる	10
7	second	8		7	（記語なし）	6
8	file	9		8	第2の	7
9	structure	10		9	ファイル	8
10	used	6		10	憡造	9
11	by	5		11	は	なし
12	SHARP－BASIC	4		12	，	なし
13	is	14		13	ランダムフクセス	14
14	random	13		14	である	13
15	access．	13		15		なし

図 2：原文単語－訳文単語対応情報
file structure used by SHARP－BASIC is random access．

といら英文を翻訳する場合，図1の「木変換」まで処理が進むと，図 3 に示すよらな木構造が得られる。 さらに処理を進めて，図1の「日本語生成」の最終段階まで進むと，図2に示すよらに，訳文を構成する訳語が，各々の原文単語と訳文単語との対応情報を伴っ て得られる。とのたび開発したシステムでは，フレー ズ訳を生成するための特別な処理をとの段階で行ら。

この特別な処理は，分割位置决定処理と，フレーズ訳生成処理そのものとの 2 段階に大別される。分割位置決定処理では，図3のよらな木構造に基づいて分割位置が決定される。こらして原文のフレーズ境界が決定され，次に，図 2 に示すよ5な原文単語と訳文単語 との対応情報に基づいて，各フレーズに属する訳文単語が求められる。そして，各フレーズにおいて，そと そ属する訳文単語を，全文生成の場合の生成順として定められた順番の昇順に詰めて，各フレーズの訳のフ レーズが得られる。
最後に，図4のよらに，原語－訳語対応情報をフレー ズ単位で付け直す。との結果，との翻訳エンジンを利用して作成された翻訳システムでは，表示の際に図5 のよらK各フレーズの頭を原文と訳文とで揃えて出す ととが可能になる。

図 1：翻訳エンジンのブロック図

図 3：木構造と分割位置

	英半話		対方		訳文フレース	対応する英単語番号
1	In	1	7	1	逐欠フフイルに加えて	1
2	addition	1	T			
3	to	1	V	2	シャープーBASICKよう	6
4	sequential	1	1		て使われる第2のフプ小栱造は，ランダムア	
5	files，	1	V			
6	the	2				
7	second	2				
8	file	2	V			
9	structure	2	，			
10	used	2	\％			
11	by	2	－			
12	SHARP－BASIC	2				
13	is	2				
14	random	2				
15	access．	2				

図 4：原文単語－訳文フレーズ対応情報

図 5：フレーズ訳の出力イメージ

規則番号	分割規則
1	SENT の直下が（END を除いて）複数の ノードになっていたら，分割する。
2	CLAUSE 系のノードは分離する。

図6：分割位置决定規則の例

フレーズ番号	原文単語範囲
1	$1-5$
2	$6-15$

図7：各フレーズの範囲

3 フレーズ訳の生成

本節では，上記の「日本語生成」処理中に実行され る，フレーズ訳の生成の基本的な手順を説明する。

3.1 原文の分割

まず，原文のフレーズへの分割位置が決定される。図2のよらな木構造の各々の節点を所定の順序で探索 し，各々の節点で，図6に示したよらな分割規則が適用可能か否かを調べ，可能なら分割位置設定の措置を行ら。

この段階で，適用する規則を適宜選択するととに よって，分割箇所を少なめにして長めのフレーズとし てまとめるか，逆に分割箇所を多めにして短めのフ レーズにするか，の調整をするととが可能である。

3.2 訳文単語の各フレーズへの割り当て

図2の木構造の図に示したように分割位置が決定さ れた結果，原文における各フレーズの範囲が决まる。 これらを原文の単語位置で示したのが図7である。と らして原文の各々の単語がどのフレーズに属するかが求まるので，各々の原文単語に対して図2のよらな原文単語－訳文単語対応情報を参照した結果，ととに対応関係が示されている訳文単語については，それぞれ どのフレーズに属するかが求まる。

3.3 対応する語が原文にない訳語の割り当

 て次に，図2のよらな原文単語－訳文単語対応情報に対応関係が示されていない訳文単語がどのフレーズに属するかを求める。

とのような訳文単語は，多くの場合は助詞などの付属語であると考えられる。そとで，付属語であるな ら，それと同一の文節に属する自立語と同一の訳文フ レーズに属すべきであるといら考え方を原則とした。

フレーズ番号	訳文単語番号
1	1,2
2	$4,5,6,7,8,9,10,11,12,13,14$

図 8：各フレーズに属する訳文単語番号

とてでは，原文単語－訳文単語対応情報に対応関係が示されていない一つの訳文単語について，その訳文単語の（文として生成した場合の順序において）直前に あって，原文単語•訳文単語対応情報に対応関係が示 されているよらな訳文単語（自立語である可能性が高にと考えられる）と同一の訳文フレーズに属すると みなす。たとえば，図 2 において 11 番目の訳文単語「は」は，10番目の訳文単語「構造」と同一のフレー ズに属するとする。

図2のよらな関係の文に関して訳文単語を各フレー ズに振り分けて，フレーズどとに訳文単語の順序を ソートした結果が図8である。との結果から，各フ レーズにおいて訳文単語を並べて，フレーズ訳を生成 した結果が図4のようになる。

4 訳の自然さの向上のための調整

著者らは，前節までの方針で構築したフレーズ訳生成機能を英日機械翻訳システムそいちど実装したが， さらに読みやすさを増すために，その後，以下のよら な改善を行った。

4.1 助動詞由来の様相の，各節の末尾の訳出への反映

たとえば，
He can sing a song and write a song．
という英文を前節までの方針で訳すと，原文の分割結果が

1．He can sing a song
2．and
3．write a song
のよらになり，フレーズ訳を生成した結果が
1．彼は，歌を歌ん
2．そして
3．歌を書くととができる
となる。との例では，原文と翻訳結果とをフレーズ単位で比較すると，1．のフレーズにおいては原文に助動詞 can が存在するが，とのととが1．の訳文フレーズに

は反映されていない。助動詞 can の効果は3．の訳文フ レーズのみに「～ととができる」といら形で現れてい る。との原因は，原文を 1 文単位で通常翻訳をした結果が

彼は，歌を歌い，そして，歌を書くととがで きる。

といらよらになり，助動詞の効果が文末のみに現れて いるととと，原文のフレーズ分割位置を忠実に訳文に反映させたためである。

しかし，1．のフレーズのみで原文と訳文とを比較し てみると，原文には助動詞が存在するのに訳文にはそ の効果が現れていないのは不自然である。原文におい て，原文の助動詞 can は，主語を共有して並列になっ ている原文の 2 つの節の両方に対して効いている。

そとで，このよらな場合，フレーズ翻訳ではそれぞ れの節に対して助動詞の効果が及んでいるととを明示的に表し，

1．彼は，歌を歌らととができ
2．そして
3．歌を書くことができる
のよらに節末の訳の形を変えるよらにした。

4.2 格の後置語の訳出位置の調整および補助記号の生成

たとえば，
I said that he ate it．
といら英文を前節までの方針で訳すと，原文の分割結果が

1．I said
2．that he ate it．
のよらになり，フレーズ訳を生成した結果が
1．私は，言った
2．彼がそれを食べると
となる。通常の文生成をすると「私は，彼がそれを食 べると言った。」となるが，フレーズ訳ではとの全文 から「彼がそれを食べると」のフレーズが中抜けした ような形となっている。

この例では，原文単語と訳文単語との対応関係は図9のよらになり，格助詞「と」は原文単語との対応関係がないとされるため，その直前の訳文単語「食べ る」と同一の訳文フレーズに属するよらにしている。 しかし，とのよらKフレーズが中抜けし，その抜けた フレーズの末尾が格助詞であるような場合は，1．のフ レーズを

英単語番号	英単語	対応する訳文単語番号	対応関係	訳文単語番号	訳文単語	対応する英単語番号
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	I said that he ate it．	$\begin{gathered} 1 \\ 10 \\ \text { なし } \\ 4 \\ 8 \\ 6 \end{gathered}$		1	私	1
				2	は	なし
				3		なし
				4	彼	4
			－	5	が	なし
			－	6	それ	6
				7	を	なし
				8	食べる	5
				9		なし
				10	言った	2
				11		なし

図 9：原文単語－訳文単語対応情報
私は, ~と言った

のよらに，抜けた元の箇所にも格助詞を補に，抜けた ととがわかるように「～」を生成するようにした。

4.3 関係節への先行詞の訳出

関係節を含む文の場合，前節をでの方針でフレーズ訳を得ると，原文は，

It contains some impurities which we re－ move by smelting．

原文のフレーズへの分割結果は，
1．It contains some impurities
2．which we remove by smelting．
フレーズの翻訳結果は，
1．それは，にくらかの不純物を含む
2．我々が溶解によって除去する
のよらに，関係節のフレーズの訳は関係詞にあたって いる格が欠けた訳となる。そとで，主節にある先行詞 を，関係節にも補に，関係節の訳フレーズが

その不純物を我々が溶解によって除去する

となるようにした。

このように関係節の欠落した格を補らためには，格 の後置語（格助詞など），先行詞，補助修飾語を推定 する必要がある。
－格の後置語は，フレーズ生成の時点で得られてい る関係節の格構造から推定する。推定不可能な場合は「は」とする。
－先行詞は，木構造において関係詞の親の節点よ り上位にあって，それと同じ種類である節点を頂点とする部分木のヘッドである。との例では，図 10 Kおいて，which の親の節点がNP（名詞句）

図 10：関係節を含む文の木構造

図 11：フレーズ訳の出力イメージ

で，これより上位にあるNPを頂点とする部分木 というととで，＂some impurities which we re－ move by smelting＂をカバーする部分木がそれに あたり，とれのヘッドがimpurities と定められて いる。
－補助修飾語は，現時点では「その」とする。

5 おわりに

上記のよらに，英日機械翻訳エンジンに付加する形 でのフレーズ訳生成機能の開発と改善を行った。との結果，係り受けの複雑な文でも，図11に示すよらに，読みやすい形で翻訳結果を出力するととができる。と の成果は1996年3月にシャーブから発売予定のノート バソコンにバンドルされる英日機械翻訳システムに搭載されている。

今後は，漸進的な解析手法なども含めて，一文単位 にとらわれない翻訳手法の研究はますます発展してい くと考えられる。フレーズ訳生成については，更に語句•記号を補らととによる読みやすさの向上をメイン として今後も改善していきたいと考えている。

