
言語処理学会 第20回年次大会 発表論文集 (2014年3月)

Solving Analogical Equations Using Probabilities
Gyeonghun Kim, Omi Keisuke and Yves Lepage

The Graduate School of Information, Production and Systems
Waseda University

kei2407@ruri.waseda.jp, kei.imp@ruri.waseda.jp, yves.lepage@waseda.jp

1 Introduction
1.1 Motivation
In [2] an algorithm to solve analogical equations using
three constraints is proposed. The results show a recall
of 100% but only a precision of 0.14%. This means that
many spurious solutions are included in the output. In
this paper, we use probabilities to improve the precision
of the solutions. In addition, we use edit distances to fur-
ther improve precision.

1.2 Analogical Equation
Proportional analogies are a general relationship between
four objects, A, B, C, and D. An analogy A : B :: C : D
states that ”A is to B as C is to D”. For example,
食べる :食べます ::認める :認めます [2]. In modern
linguistics, analogy is considered to be a synchronic oper-
ation by which given two forms of a given word, and only
one form of a second word, the fourth missing form is
coined. For example, 食べる :食べます ::認める : x
⇒ x =認めます.
Solving analogical equations as the above one, between
strings of symbols, is an important core method in
example-based machine translation (EBMT) following
the proposal by Nagao in 1984 [6]. In 2005, Lepage and
Denoual [5] refined the proposal. In their framework,
solving analogical equations is crucial. Let us suppose
that (A,A′), (B,B′), (C, C′) are in the translation table of
an EBMT system. To translate D, if C can be obtained
as the solution of the analogical equation between A, B,
and D in the source side, then, D′ can be output from A′,
B′, and C′ in the target side, with the result that D′ is the
translation of D.

A : B :: x : D
↓
C

l l l l
A′ : B′ :: C′ : y

↓
D′

2 Previous Work
Analogy has been mainly used in linguistics during the
19th and 20th centuries. Lepage [3] provides an algo-
rithm for the resolution of analogical equations to solve
proportional analogies between strings of symbols. The
algorithm is based on an edit distance with constraints.
Precisely, it relies on the following implication:

A : B :: C : D⇒

{ |A|α + |D|α = |C|α + |B|α ,∀α
d(A,B) = d(C,D)
d(A,C) = d(B,D)

(1)

Ito et al. [2] refined the first line in (1) using three con-
straints. They did not use the second and third line with
the distance constraint. The three constraints are length
of the solution, number of occurrences of each symbol in
the solution, and positions of symbols in the solution. We
explain these three constraints below.

2.1 Length of the Solution
The length of the solution D is determined by the length
of the three given terms A, B, and C. The length of the
solution is given by:

|A|+ |D|= |B|+ |C|
⇒ |D|= |B|+ |C|− |A| (2)

2.2 Number of Occurrences of Symbols
The number of occurrences of symbols for the solution D
is determined by their number of occurrences in the three
given terms A, B, and C. The definition of the number of
occurrences of the symbol a in the solution D is given by
the first equation in the right part of (1):

|A|a + |D|a = |B|a + |C|a
⇒ |D|a = |B|a + |C|a−|A|a (3)

2.3 Position of Symbols in the Solution
The position of the symbols in the solution is determined
by their position in the three given terms A, B and C. We
determine match points between A and B and between
A and C in a searching area. The searching area is the
diagonal of the rectangle between two terms. The width
of the searching area is:

Area(A,B) = ||A|− |B||+1 (4)

For the analogical equation du : duzhe :: xue : D, the
width of the searching area between du and duzhe is
Area(du,duzhe) = |2−5|+1 = 4 in this case.

Figure 1: Searching area between terms for the analogical
equation du : duzhe :: xue : D.

In Figure 1, the black cells show the searching areas
between the terms. The red cells show the matched char-
acters between the terms. As a result, we determine the
matched characters between terms in the searching areas
(e.g., u and d in this case). However, in some cases, some
match points do not fall in the searching area. Let us
consider the analogical equation dues : indu :: neés : D.

― 27 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

The width of the searching area between dues and indu
is Area(dues, indu) = |4− 4|+ 1 = 1. Figure 2 shows
the searching abetween two words, reas for the analogi-
cal equation dues : indu :: neés : D.

Figure 2: Searching area between terms for the analogical
equation dues : indu :: neés : D.

In this case, we need to extend the searching area.
When doing so, we extend the areas above and below the
original area simultaneously. In Figure 2, the gray cells
represent the extended area to include all match points.
We call this area the extra band. In the example above,
the extended area represents four squares, so the extra
band size is two, and two squares are taken above and be-
low the original searching area. With this modification,
the definition of the searching area is:

Area(A,B) = ||A|− |B||+1+ |extra band| (5)

From experiments conducted in previous research [2]
the searching area necessary to find a solution is deter-
mined as:

Area(A,B) = Area(C,D)
Area(A,C) = Area(B,D) (6)

To summarize all the constraints given above, the ana-
logical equation du : duzhe :: xue : D, the length of the
solution D is 6, the number of occurrences of each sym-
bol in the solution D is (x : 1,u : 1,z : 1,h : 1,e : 2) and
Figure 3 shows the possibilities of placing symbols in the
solution D. In the solution, the character d does not ap-
pear. Hence, we removed the possibility of having match
points below character d from the diagram.

Figure 3: Searching area for the solution for the analogi-
cal equation du : duzhe :: xue : D.

3 Proposed Method
Previous research reported in [2] yielded a recall of
100%, but only produce a precision of 0.14% when ap-
plying the previous three constraints. Based on the in-
spection of Figure 3 and many other cases, we propose
four additional constraints to eliminate spurious results.
Our goal cannot be to achieve a precision of 100% on
a given set of linguistic examples. For example, in
du : duzhe :: xue : D, D might be a xuezhe or xuzhee in
human thought; however, Chinese data will only propose
xuezhe. Therefore, achieving 100% precision is clearly
not a requirement, but any method improving precision is
highly desirable.

3.1 Scoring by probability of characters
given position

With these new constraints, we determine the charac-
ter for each position in the solution by calculating the
probability of a character given its position P(Char =
x |pos=y). This is given by:

P(Char = x | pos= y)=
P(Char = x)∩P(pos = y)

P(pos = y)
(7)

For the analogical equation du : duzhe :: xue : D, the pos-
sibilities have been presented in Figure 3. The probabil-
ities for each character given its position is calculated in
Table 1.

Position in D x u e z h
D[1] 1

1
D[2] 1

3
2
3

D[3] 1
5

2
5

1
5

1
5

D[4] 1
5

1
5

1
5

1
5

1
5

D[5] 1
4

2
4

1
4

D[6] 2
2

Table 1: Probability of a character given its position for
the analogical equation du : duzhe :: xue : D.

This yields solutions with a probabilistic score. The
best score is 1.00. In this method, the closer the score to
1.00, the better the solution. The score of the solution is
given by:

Score = ΠP(character|position) (8)

3.2 Scoring by probability of column given
position

We determine the match points for each position in the
solution. To determine a match point, we separate the
characters by columns and positions. For each possibility,
we calculate the probability of a column given its position
P(Col = x |pos=y) by:

P(col = x | pos = y) =
P(col = x)∩P(pos = y)

P(pos = y)
(9)

For the analogical equation du : duzhe :: xue : D, the pos-
sibilities are presented in Figure 3. The probability of a
column given its position is calculated a show in Table 2.
As with the prievous constraint, this method yields solu-
tions with a probabilistic score. The initial score is 1.00.
The score of a solution is given by:

Score = ΠP(column|position) (10)

With this method, all results have the same score be-
cause each match point appears only once. This method
delivers the same results as with the previous research re-
ported in [2].

3.3 Scoring by contiguity of characters
For this method, we determine contiguous match points
using the probability of column given position discussed

― 28 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

Position in D B[5] B[4] B[3] B[2] B[1] C[1] C[2] C[3]
D[1] 1

1
D[2] 1

3
1
3

1
3

D[3] 1
5

1
5

1
5

1
5

1
5

D[4] 1
5

1
5

1
5

1
5

1
5

D[5] 1
4

1
4

1
4

1
4

D[6] 1
2

1
2

Table 2: Probability of a column given its position for the
analogical equation du : duzhe :: xue : D.

above. The contiguity of the results is a sequence of ad-
jacent characters from the same term. In this way, most
of contiguous match points tend to be prefixes or suffixes.
For the analogical equation du : duzhe :: xue : D, Table 3
shows the results with this method. We score substrings
by calculating the score of a solutions according to:

Score(substring) = |Continuous seq|−1
Score = Σ(Score(substring)) (11)

Here the higher the score, the better the solution. The
results are shown in Table 3. The result in boldface is the
best result obtained using this method (e.g.,xuezhe).

Match point Solution score
C[1],C[2],C[3],B[3],B[4],B[5] xuezhe 2 + 2 = 4
C[1],B[2],C[3],B[3],B[4],B[5] xuezhe 0 + 0 + 0 +2 = 2
C[1],C[2],B[3],B[4],B[5],C[3] xuzhee 1 + 2 + 0 = 3
C[1],B[2],B[3],B[4],B[5],C[3] xuzhee 0 + 3 + 0 = 3
C[1],C[2],B[3],B[4],C[3],B[5] xuzhee 1 + 1 + 0 + 0
C[1],B[2],B[3],B[4],C[3],B[5] xuzhee 0 + 2 + 0 + 0 = 2
C[1],C[2],B[3],C[3],B[4],B[5] xuzehe 1 + 0 + 0 + 1 = 2
C[1],B[2],B[3],C[3],B[4],B[5] xuzehe 0 + 1 + 0 + 1 = 2

Table 3: The results of the Contiguity method for the ana-
logical equation du : duzhe :: xue : D.

3.4 Scoring entropy based on reordering
In this method, we use the probability of characters given
positions to calculate the entropy at each position. We
choose a position according to the least entropy to de-
termine which character it should contain. After select-
ing the position and the character, the porobabilities are
updated. As a result, the entropies at each position are
changed. This creates a new state for which the total en-
tropy is:

Entropy of a state = Σ(Entropy of position) (12)

Using the entropy of each state, we can trace the states
used to build a solution, one position after another, as
shown in Table 4, 5. Table 5 shows the state after choos-
ing the character D[1] = C[1] = x and before choosing
the character D[6] = C[3] = e. The character x disap-
pears from position D[2] as it should appear only once in
the solution. We thus remove this character by the con-
straint on the number of occurrences of symbols in the
solution. Then, we recompute the probability of all char-
acters given its position, and consequently, the entropies
for each position in the solution. The equation for the
entropy score of a solutions is given by:

Score = Σ(Entropy of position) (13)

In this method, the lower the score, the better the solu-
tion.

Position in D x u e z h Entropy
D[1] 1

1 0.00
D[2] 1

3
2
3 0.92

D[3] 1
5

2
5

1
5

1
5 1.92

D[4] 1
5

1
5

1
5

1
5

1
5 2.32

D[5] 1
4

2
4

1
4 1.92

D[6] 2
2 0.00

Entropy of state 6.66
Result [, , , , ,]

Table 4: Entropy of an initial state for the analogical
equation du : duzhe :: xue : D.

Position in D x u e z h Entropy
D[1] = ’x’ -

D[2] 2
2 0.00

D[3] 2
3

1
3 0.92

D[4] 1
3

1
3

1
3 1.58

D[5] 1
3

1
3

1
3 1.58

D[6] = ’e’ -
Entropy of state 4.08

Result [x, , , , ,e]
Table 5: Entropy of an second state for the analogical
equation du : duzhe :: xue : D.

4 Experiments
4.1 Data
We use linguistic examples that are true proportional
analogies in their language for our test experiments. The
data cover 12 languages: Japanese and Chinese and 10
other languages from the Europarl Corpus (such as Ger-
man, French, or English). We use 99 basic proportional
analogies in these 12 languages. Using the fundamental
properties of proportional analogies, it is possible to gen-
erate seven different equivalent forms that have the same
meaning. In addition, by reading from right to left, i.e.,
taking the mirror of strings, seven other equivalent forms
can be generated. The forms of the proportional analo-
gies [4] are:

A : B :: C : D , A−1 : B−1 :: C−1 : D−1

A : C :: B : D , A−1 : C−1 :: B−1 : D−1

B : A :: D : C , B−1 : A−1 :: D−1 : C−1

B : D :: A : C , B−1 : D−1 :: A−1 : C−1

C : A :: D : B , C−1 : A−1 :: D−1 : B−1

C : D :: A : B , C−1 : D−1 :: A−1 : B−1

D : B :: C : A , D−1 : B−1 :: C−1 : A−1

D : C :: B : A , D−1 : C−1 :: B−1 : A−1

In the above, A−1 is the mirror of A (cba for abc).
We generate 1584 = 99×16 linguistic examples from 99
proportional analogies. Because our algorithms are neu-
tral relatively to the exchange of the means (A : B :: C : D
⇔ A : C :: B : D), we generate only half of the possible
analogical equations. As a result, from 99 equations, we
collected 1584/2 = 792 new analogical equations. These
examples constitute the same data set as previously used
in [2]. Linguistic negative examples are also used. They
are created based on linguistic examples. The general
form of a linguistic negative is:

A : B 6= D : C

When A : B :: C : D is a valid analogy, A : B :: D : C
is generally not an analogy [1]. We checked all our neg-
ative examples by hand for not being valid analogies. In
this way, we generated 792 = 99× 8 linguistic negative
examples from 99 proportional analogies.

― 29 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

Precision Recall F-measure Accuracy
Character given position 4.8% 73.4% 9.0% 10.0%
same + edit distance 41.6% 87.0% 56.3% 58.1%
Column given position 0.1% 100.0% 0.1% 0.1%
same + edit distance 11.9% 100.0% 21.3% 21.2%
Contiguity 60.2% 85.5% 70.7% 54.3%
same + edit distance 81.2% 94.6% 87.6% 87.9%
Entropy 42.1% 68.8% 52.3% 48.4%
same + edit distance 59.8% 79.2% 68.2% 70.8%
C program[3] 33.9% 44.4% 38.4% 44.3%

Table 6: Performance of methods (Boldface of results are the best).

4.2 Applying edit distances
We also apply edit distances to filter the results of the four
methods. Spurious solutions are of two types: 1. They
may be theoretically valid solutions but may not exist in
the language considered; 2. They may be theoretically
invalid; these are truly spurious solutions.

Results Score
yxeuuan 0.0042
xyeuuan 0.0042
xueyuan 0.0021

(a) Before applying edit dis-
tances

Results Score
xueyuan 0.0021

(b) After applying edit distances

Table 7: Applying edit distances for the analogical equa-
tion yi : xue :: yiyuan : D.

Table 7a shows the results on the set of solutions of the
analogical equation yi : xue :: yiyuan : D for the method
probability of character given position. After applying
the edit distance constraints, the original set of results is
redefined as a new set where only the best results are in-
cluded as shown in Table 7b. The edit distance constraint
removes spurious solutions from the results (e.g., the top
two in Table 7a). After these are removed, we select the
best solution, i.e., the one with. For the example above,
only one solution remains after applying edit distance. It
thus becomes the best solution by default. The applica-
tion of edit distances generally improves the precision of
our methods.

4.3 Results
Although our goal is mainly to improve the precision
compared to previous research [2], we measure our re-
sults not only using precision and recall but also using
F-measure and accuracy. We also measure the results
against those of a previous C program [3] as a baseline.
This C program had the drawback of outputting only the
first solution it finds. All the results are summarized in
Table 6.

As said already, the method in [2] yields a recall of
100%, but a very low precision of 0.14%. For recall, our
Column given position method with edit distance pro-
duces the best results. The other three methods, Proba-
bility of character given position, Entropy and Contigu-
ity, improved precision, F-measure and accuracy. Apply-
ing edit distances always improves the precision over the
basic method. Applying the edit distance with character
given position, contiguity and entorpy yields better re-
sults than the C program [3].

5 Conclusions
Our proposed methods improved results in solving ana-
logical equations between strings of symbols. We ob-
tained higher precision, but lower recall. Contiguity
with edit distance yields the best results in precision, F-
measure and accuracy that we could obtain until now.

References
[1] Meriam Bayoudh, Henri Prade, and Gilles Richard.

Evaluation of analogical proportions through Kol-
mogorov complexity. Knowledge-Based System, 29:
20–30, 2012.

[2] Maiko Ito, Gyeonghun Kim, and Yves Lepage. A
study of algorithms to solve analogical equations be-
tween strings of symbols (in Japanese). In Pro-
ceedings of the 18th Japanese National Conference
in Natural Language Processing, pages 296–299,
Nagoya, March 2013.

[3] Yves Lepage. Solving analogies on words: an al-
gorithm. In Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguis-
tics and 17th International Conference on Compu-
tational Linguistics (COLING-ACL 98), Volume 1,
pages 735–735, Montreal, Quebec, Canada, August
1998.

[4] Yves Lepage. Analogy and formal languages. Elec-
tronic Notes in Theoretical Computer Science, 53:
180–191, 2004.

[5] Yves Lepage and Etienne Denoual. Purest ever
example-based machine translation: Detailed presen-
tation and assessment. Machine Translation, 19(3-4):
251–282, 2005.

[6] Makoto Nagao. A framework of a mechanical trans-
lation between Japanese and English by analogy
principle. In Proceedings of the International NATO
Symposium on Artificial and Human Intelligence,
pages 173–180, New York, NY, USA, 1984. Elsevier
North-Holland, Inc. ISBN 0-444-86545-4.

― 30 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

	Introduction
	Motivation
	Analogical Equation

	 Previous Work
	Length of the Solution
	Number of Occurrences of Symbols
	Position of Symbols in the Solution

	 Proposed Method
	Scoring by probability of characters given position
	Scoring by probability of column given position
	Scoring by contiguity of characters
	Scoring entropy based on reordering

	 Experiments
	Data
	Applying edit distances
	Results

	 Conclusions

