
言語処理学会 第20回年次大会 発表論文集 (2014年3月)

A preordering method using head-restructured CFG
parse tree for SMT

Zhongyuan Zhu, Masanori Taniguchi, Chenchen Ding and Mikio Yamamoto
University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
{raphael, m.taniguchi, tei}@mibel.cs.tsukuba.ac.jp, myama@cs.tsukuba.ac.jp

1. INTRODUCTION
Statistical Machine Translation (SMT) has been proved
to be practical in the translations of many major lan-
guage pairs. However, for language pairs with a sharp
contrast in word orders such as English-Japanese, SMT
runs into obstacles. The translation correspondences be-
tween these languages are difficult to capture, which fi-
nally affects the translation quality.

In previous researches, reordering input sentences to the
expected word order of the target language before train-
ing a translation model improved the translation quality.
The work of (Yamada & Knight, 2001) is considered as
a forerunner in reordering syntactic parse trees. Basi-
cally, automatically generated syntactic information or
human-made rules are utilized in the reordering process.
As an example, the state-of-the-art reordering method
for English-to-Japanese, Head-finalization (Isozaki et al.,
2010) utilizes head-driven phrase structure grammar (HPSG)
parse trees.

For reordering methods based on word alignments, the
work of (Lerner & Petrov, 2013) reorders a dependency
parse tree by a multi-class classifier with a set of human-
made features, which is trained on reordered a training
corpus according to the expected word order of the tar-
get language. In (Navrátil et al., 2012), subtrees are re-
ordered on the basis of their reordering probabilities. In
their model, parent and sibling nodes are considered to
be the context. In (Bisazza & Federico, 2012), language
models are utilized for pruning an n-best list of reordered
chunk representations. Further, they combine language
models trained for different representations by log-linear
combinations.

In this paper, we present a novel reordering model based
on head-restructured context-free grammar (CFG) parse
tree. This parse tree is built by restructuring all S nodes
(non-terminal nodes with the tag“S”, which indicate sen-
tences) in a CFG parse tree with head-dependent rela-
tionships, and re-tagging some non-terminal nodes with
words. We call this new parse tree “head-restructured
CFG parse tree” in this paper. However, for the reorder-
ing model, we reorder these parse trees by applying lan-
guage models to estimate the probabilities of all possible
orders and find the best order. From the reordered parse
tree, we can export a string of words that are optimized
in the expected word order of the target language.

2. HEAD-RESTRUCTURED CFG PARSE
TREE

2.1 Restructuring S nodes
The word order of many languages such as English and
Japanese is considered to be closely related to the gram-
matical roles of words (e.g., subjects and objects), which
can be retrieved from dependency parse trees. Therefore,
the use of dependency parse trees for reordering can help
the reordering model to capture these correspondences.
While we want to maintain reasonable syntactic struc-
tures for most parts of the entire parse tree, we extract
head-dependent relationships from a dependency parse
tree and restructure S nodes in the corresponding CFG
parse tree.

To construct head-restructured CFG parse trees, we need
both CFG and dependency parse trees as the input. Here,
a dependency parse tree is required to be consistent with
the CFG parse tree of the same sentence. The construc-
tion process is divided into the following four steps:

1. Find a node nodes with the syntactic tag “S” in the
CFG parse tree, and mark the words covered by
nodes with span(nodes).

2. In the dependency parse tree, find the head word
depheads, which also exactly covers span(nodes).
(As our generated dependency parse tree is consis-
tent with the CFG parse tree, depheads shall exist).

3. For each word depchildi ∈ {depchild1, ..., depchildn}
that modifies the head word depheads in the de-
pendency parse tree, we create a new non-terminal
node. Its syntactic tag is set to be the type of gram-
matical relation between depchildi and depheads.
Then, we append this newly created non-terminal
node to be a child node of nodes in the CFG parse
tree. In the case of head word depheads, we put
the corresponding terminal node in the CFG parse
tree underneath nodes directly.

4. For each word depchildi in Step 3, we find a non-
terminal node in the CFG parse tree that covers
the same span as depchildi covers in the depen-
dency parse tree. Then, we move this non-terminal
node to be a child node of the non-terminal node
that we created in Step 3 corresponding to the word
depchildi.

We execute these four steps recursively until all the S
nodes are restructured. In the left side of Figure 1, we
show an example of CFG parse trees. The dotted lines
show the dependency relations of each word, and the type

― 594 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

of its grammatical relation is mentioned to the right of
the arrow. The right side of Figure 1 shows the restruc-
tured parse tree by applying these four steps. As there is
only one S node (the root node), we only perform the re-
construction for this node. Hence, span(nodes) includes
all words in this case. In Step 2, the verb “throw” is de-
termined as depheads, which has three dependent words:
“I”, “ball”, and “rapidly”. Then, in Step 3, their gram-
matical relations are applied as the tag of the three newly
created non-terminal nodes under nodes (“nsubj”, “dobj”,
and“advmod”). For the head word“throw”, we put (VBP
throw) underneath nodes directly. In Step 4, the spans
that the three dependent words cover are “I”, “the ball”,
and “rapidly”, respectively, which correspond to the non-
terminal node “PRP”, “NP”, and “ADVP” in the CFG
parse tree. Therefore, we moved these three non-terminal
nodes beneath the corresponding nodes created in Step
3, respectively.

S

nsubj dobjVBP advmod

throwPRP

I

NP

DT NN

the ball

RB

rapidly

S

NP VP

VBP NP ADVP

DT NN RB

PRP

I thethrow ball rapidly

nsubj dobj advmoddet

NP

DT NN

the ball

Figure 1: An example of a restructured tree

The restructured parse tree obtained after applying the
abovementioned four steps is similar to the output of
Charniak-Johnson Re-ranking Parser (Charniak & John-
son, 2005) to some extent. For the example shown in the
left of Figure 1, their parser gives the following result in
S-expression:

(S (NP (PRP I))

(VP (VBP throw) (NP (DT the) (NN ball))

(ADVP (RB rapidly))))

In the parsing result of their parser given above, all the
dependent portions are placed beneath the node “VP”
together with the head word.

2.2 Re-tagging non-terminal nodes
To capture fine reordering correspondences, both the tags
and the words should be considered in the reordering
model. Hence, we use a word to represent a non-terminal
node in CFG parse trees if possible.

For the following two patterns, we re-tag all the matching
non-terminal nodes in a CFG parse tree by words.

1. There is only one child node of the given non-terminal
node, which is the parent of a terminal node. We
apply the word of this terminal node as the tag

2. There are several child nodes of the given non-terminal
node, in which the left-most child node is the par-
ent of a terminal node, and one of the remaining

child nodes is the parent of the non-terminal node.
We apply the word corresponding to the terminal
node beneath the first child node as the tag.

We illustrate these two patterns of re-tagging in Figure
2.

IN

advmod

with

RB

happily

PP

NP

NNS

Pattern 1: Pattern 2:tag(advmod) = happily tag(PP) = with

friends

Figure 2: An illustration of two patterns of re-tagging

However, we apply a practical restriction that forces the
tags representing nouns (“NP”, “nsubj”, and others) to
remain unchanged. This restriction prevents the reorder-
ing model from becoming very sparse.

3. PROPOSED REORDERING MODEL
3.1 Model
While considering the head-restructured CFG parse trees
as inputs, the reordering model focuses on obtaining the
best order for the child nodes of each non-terminal node.

Given a node with the tag tp and its child nodes with tags
T = {t1, ..., tn}, we define an order o as a sequence, where
oi ∈ {1, ..., n} should be unique in o. In our reordering
model, the probability of an order o in the case of this
tag set is calculated as follows:

p(tp,T,o) = p(tp, to1 , to2 , ..., ton) (1)

= p(tp)p(to1 |tp)...p(ton |tp, to1 , ..., ton−1)(2)

= p(tp)

n∏
i=1

p(toi |tp, to1 , ..., toi−1). (3)

The best order ô can be obtained as follows:

ô = argmax
o′

p(tp,T,o′).

As expressed by equation (3), the purpose of our re-
ordering model is to utilize language models to obtain
the probability of the tag sequence (tp, to1 , to2 , ..., ton).
For example, the original order of the S node in Figure 1
corresponds to the tag sequence “S nsubj throw dobj
rapidly”. We add the tag of the parent node to the
beginning as context information.

3.2 Model training
In the model training phase, we generate a large num-
ber of reordered tag sequences on the basis of the au-
tomatically retrieved word alignments and then, train
an n-gram language model using them as our reorder-
ing model.

Here, we show how to obtain a tag sequence with the op-
timized order for a node in the parse tree. First, for each

― 595 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

child node, we get the aligned words of target language
corresponding to the words it cover. Then we calculate
the average position of those aligned words in the target
sentence.

As an example, the bilingual pair corresponding to the
restructured tree in the right of Figure 1 is shown in
Figure 3. The dotted lines represent the automatically
retrieved word alignments. Therefore, for all child nodes
of the S node in this case, we show the details of each
step to get the average position in Table 1.

I thethrow ball rapidlythe ball

私 は 速やか ボールに を 投げる

Figure 3: An example of a bilingual pair with word align-
ments

Table 1: The details of each step to get the average position
for the S node in the right of Figure 1

nodes nsubj VBP dobj advmod
tags nsubj throw dobj rapidly
words {I} {throw} {the, ball} {rapidly}

aligned words {私} {投げる} {は, ボール} {速やか}
positions {1} {7} {2,5} {3}

average positions 1 7 3.5 3

To obtain a tag sequence in the expected word order of
the target language, we merely sort the tag sequence by
the value of average position for each node. For the ex-
ample in Table 1, the optimized tag sequence is “nsubj
rapidly dobj throw”. We append the tag of the parent
node before outputting the abovementioned tag sequence
as a piece of training data of the language models, which
will be “S nsubj rapidly dobj throw”.

3.3 Reordering
In the reordering phase, given a node with its child nodes,
we look up all possible orders of its child nodes. Then,
we use language models to evaluate the probability of the
corresponding tag sequences. The order with the highest
probability is selected as the best order. We reorder these
child nodes according to the best order. Given a head-
restructured CFG parse tree, we reorder all the child
nodes of each node to form a new tree and export all
the words of the terminal nodes to form a string output.

4. EXPERIMENTS
4.1 Experimental settings
Our experiments were carried out on the NTCIR-7 corpus
in the English-to-Japanese translation; this corpus con-
tains 1.8M bilingual sentences for use as training data and
915 bilingual sentences for tuning the translation models.
We use the data provided for the formal run of NTCIR-
7, which contains 1,381 sentences, as test data. In the
experiments, we clean the training data by limiting each
sentence to no more than 40 words. Our reordering model
and translation model are both trained on these cleaned
data.

To generate head-restructured CFG parse trees, we parse
all sentences on the English side into CFG and depen-
dency parse trees. We selected the Berkeley parser for

CFG parsing. Then, we use CFG parse trees to gener-
ate standard Stanford dependencies using the Stanford
parser. Finally, we obtain head-restructured CFG parse
trees using the method described in Section 2.

We first use GIZA++ to train word alignments from the
original training data. Then, on the basis of the word
alignments and head-restructured CFG parse trees, we
generate a list of tag sequences using the method de-
scribed in Section 3.2, which is optimized in the expected
word order of Japanese. We utilize SRILM to train a 5-
gram language model with Kneser-Ney smoothing on the
optimized tag sequences.

As our experiments are focused on English-to-Japanese
translation, we select the state-of-the-art reordering method
Head-finalization as our baseline. Similar to Head-finalization,
we append seed words “va nsubjpass”, “va nsubj”, and
“va dobj” to the end of words covered by non-terminal
nodes with the tags “nsubjpass”, “nsubj”, and “dobj”, re-
spectively. The first two seed words are considered to
correspond to “は” or “が”, while the remaining one is
considered to correspond to “を” in Japanese. Further,
we removed “a”, “an”, and “the” from all the sentences on
the English side of the training corpus.

4.2 Evaluations using Kendall’s Tau
To evaluate how close the orders are between our re-
ordered English sentences and the corresponding Japanese
sentences, we estimate Kendall’s τ in the same manner
as that of Head-finalization for the cleaned training data.
To compare, we created a replication of Head-finalization
processing the results of Enju HPSG parser. The distri-
bution of the estimated Kendall’s τ values after adding
seed words is shown in Figure 4. Because there is no
recorded τ value lower than -0.7, we omit this part in the
figure. The second column of Table 2 shows a comparison
of the average Kendall’s τ value for each method.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

(!#)"(!#*"(!#$"(!#+"(!#'"(!#&"(!#%"!#!" !#%" !#&" !#'" !#+" !#$" !#*" !#)" !#," !#-" %#!"

./010234"./56/"

7635(8234093:;2"

</;=;>65"?6@A;5"

Figure 4: A comparison of the distributions of Kendall’s τ
on the cleaned training data

4.3 Evaluations of translation quality
We carried out experiments for testing the translation
quality using the phrase-based model (Koehn et al., 2003)
implemented in Moses. For the training data in the orig-
inal order, we gained the best automatic scores when
the distortion limit (dl) is set to 18. The best auto-
matic scores are obtained when dl = 6 for both the pro-
posed method and Head-finalization. A comparison of
the BLEU (Papineni, 2002) and RIBES (Isozaki, 2010)
scores for each method is shown in Table 2.

4.4 Evaluations of reordering speed

― 596 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

Table 2: Automatic scores for each method

Method Average τ BLEU(%) RIBES
Original Order (dl = 18) 0.419 31.21 0.702
Head-finalization (dl = 6) 0.727 32.01 0.749
Proposed method (dl = 6) 0.797 34.56∗ 0.769

* means that the result is significantly different at the 5% level

as compared to that of other methods (only for BLEU evaluation

criterion).

To get a comparison for reordering speed, we estimated
the average processing time (user time) for reordering one
sentence by Head-finalization and our proposed method,
which is shown in table 3. Where the column of “Stan-
ford” for proposed method means the time consumed
for generating Standard Stanford Dependencies from the
parsing result of Berkeley parser.

Table 3: A comparison of average processing time(ms) for
one sentence

Head-finalization
Enju Reordering Total
446.58 7.12 453.7

Proposed method
Berkeley Stanford Reordering Total
220.24 31.53 1.65 253.42

4.5 Reordering samples
In this section, we show some samples of the reordered
sentences. Basically, for sentences with simple grammat-
ical structures, the proposed method produces similar
results as Head-finalization. For sentence (1), the pro-
posed method generates the reordered result (2), while
Head-finalization returns (3). Here, the corresponding
Japanese translation is “期間Ｔ２において電流が停止して
いる.” Sentence (2) can be translated to Japanese mono-
tonically.

Because Japanese is an SOV language, often, the subject
words appear before the verbs. However, the position of
the other parts corresponding to the prepositional clauses
(e.g., “in ...” and“for ...”) is considered to be related more
with the actual words. By re-tagging non-terminal nodes
with words, the proposed model is able to capture these
patterns.

(1) the current is stopped in the interval t2

(2) interval t2 in current va_nsubjpass stopped is

(3) current _va1 interval t2 in stopped is

For exemplifying what happens in the case of complex
sentences, we show sample sentence (4), which trans-
lates to “目皿板が回転する装置も多く提案されている” in
Japanese. The proposed method produces (5) as the re-
sult of reordering, while (6) is the result of Head-finalization.
In this sample, the proposed method benefits from the
correct parsing result that recognizes “proposed” as a
head. The head-restructured CFG parse tree of (4) has
the following form: “(S (S (there (NP (EX there)))
(have (VBP have)) (been (VBN been)) (VBN
proposed) (ccomp ...)) (. .))”.

(4) there have been proposed many apparatuses wherein
a perforated disk is made rotatable.

(5) wherein perforated disk va_nsubjpass
made is rotatable many apparatuses there
proposed been have.

(6) there _va1 perforated disk _va1 rotatable
made is wherein proposed many apparatuses
_va2 been _va2 have.

5. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a reordering model based on
head-restructured CFG parse trees built from CFG and
dependency parse trees, and used language models to
reorder them. Because the standard Stanford Depen-
dencies can be generated from any CFG parse tree very
rapidly, the performance of the proposed method actually
depends only on a CFG parser. Owing to the trade-offs
between the parsing speed and accuracy, the proposed
method satisfied many different needs by applying differ-
ent CFG parsers. When compared to this, the parsers for
other linguistic grammar such as HPSG are considerably
limited.

The proposed reordering model tries to capture corre-
spondences at the word level to perform more accurate
reordering. In our experiments, both BLEU and RIBES
scores improved on using the proposed reordering model
as compared to the state-of-the-art reordering method
Head-finalization. On the other hand, involving words
in the reordering model resulted in sparseness problem.
In some simple cases, the proposed method failed to re-
order a tag sequence like “S nsubj comprises dobj”
correctly because “comprises” appeared only a few times
in the training data.

6. REFERENCES
[1] Arianna Bisazza and Marcello Federico. Modified distortion

matrices for phrase-based statistical machine translation. In
Proceedings of the 50th Annual Meeting of the ACL: Long
Papers-Volume 1, pages 478–487. ACL, 2012.

[2] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best
parsing and maxent discriminative reranking. In Proceedings
of the 43rd Annual Meeting on ACL, pages 173–180. ACL,
2005.

[3] Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh,
and Hajime Tsukada. Automatic evaluation of translation
quality for distant language pairs. In Proceedings of the
2010 Conference on EMNLP, pages 944–952. ACL, 2010.

[4] Hideki Isozaki, Katsuhito Sudoh, Hajime Tsukada, and
Kevin Duh. Head finalization: A simple reordering rule for
sov languages. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR,
pages 244–251. ACL, 2010.

[5] Ramanathan Jiŕı Navrátil Karthik
Visweswariah Ananthakrishnan. A comparison of syntactic
reordering methods for english-german machine translation.
2012.

[6] Philipp Koehn, Franz Josef Och, and Daniel Marcu.
Statistical phrase-based translation. In Proceedings of the
2003 Conference of the North American Chapter of the
ACL on Human Language Technology-Volume 1, pages
48–54. ACL, 2003.

[7] Uri Lerner and Slav Petrov. Source-side classifier preordering
for machine translation. In Proceedings of EMNLP, 2013.

[8] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of 40th Annual Meeting of the
ACL, pages 311–318, Philadelphia, Pennsylvania, USA, July
2002. ACL.

[9] Kenji Yamada and Kevin Knight. A syntax-based statistical
translation model. In Proceedings of the 39th Annual
Meeting on ACL, pages 523–530. ACL, 2001.

― 597 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

