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1. Introduction
Prediction of prosodic information from text is a basic technol-
ogy used in a number of speech-related applications. In partic-
ular, pauses prediction is used in speech synthesis to allow for
more natural prosodic boundaries [1]. While early studies in
pause prediction only relied on lexical information such as POS
tags or punctuation [1, 2], recent works have shown that using
syntactic structure helps achieve better accuracy [3].

This work focuses on the use of dependency structure for
pause prediction. Our method is inspired by recent work by
Honnibal and Johnson [4] on the related, but quite different
task, of disfluency detection. In this work, they propose a model
that jointly performs dependency parsing and disfluency detec-
tion, and demonstrate that a joint model that considers these two
tasks improves over solving these two tasks individually. Thus,
in this paper, we propose a method for joint dependency parsing
and pause prediction.

One of the most widely used methods for dependency pars-
ing is the transition-based method based on the shift-reduce al-
gorithm [5]. As shown in the black text of Figure 1, and ex-
plained in detail in Section 2, the shift-reduce method builds a
dependency tree expressing the syntactic structure of the sen-
tence by performing a series of “shift” and “reduce” actions,
and if the correct action sequence is chosen, the correct depen-
dency tree will be created. A classifier to choose the correct
answer is trained from syntactically annotated data.

In our proposed model, we further expand the action set of
the shift-reduce algorithm by adding actions that predict pauses,
as shown in the bold, red text in Figure 1, and is described
in detail in Section 3. This presents more difficulties in train-
ing, however, as it is necessary to have data that is annotated
with both pauses and syntactic information, which cannot be
obtained in large quantities. To solve this problem, we treat
the pauses as latent variables, allowing our parsing model to be
trained on data fully annotated with syntax and pauses as well
as data only annotated with syntactic trees.

In the experiments described in Section 4, we find that the
proposed model exceeds all baselines, and that the proposed la-
tent variable allows for effective use of data not explicitly anno-
tated with pauses, resulting in an 11.6% absolute improvement
in pause F -measure.2

2. Shift-reduce dependency parsing
2.1. Shift-reduce algorithm

Shift-reduce is a dependency parsing algorithm that parses sen-
tences one word at a time from left to right [5]. Shift-reduce

1Now with Nagoya University.
2This paper is a shortened version of [6].
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Figure 1: An example of shift-reduce dependency parsing, and
the proposed pause prediction action.

parsers use a queue to store the input words and a stack to store
the dependency structure that has been built so far. The shift-
reduce process converts the input sentence into dependency
structure through a sequence of actions, an example of which
is shown in Figure 1. Our work adopts a modified version of
the arc-standard shift-reduce algorithm proposed by [7], which
has three different actions:

SHIFT: remove the first word in the queue and put it into the
stack.

LEFT: create an edge from the first word in the stack to the
second, then remove the second word from the stack.

RIGHT: create an edge from the second word in the stack to
the first, then remove the first word from the stack.

For each edge in the dependency tree, the parent node is called
the head and the child node is called a dependent. Each word
have exactly one head and can have multiple dependents. To
create the dependency structure of a sentence, our task is to
choose the sequence of shift-reduce actions a that achieve the
correct tree y from input sentence x. Note that in this modified
arc-standard shift-reduce framework, there is a one-to-one cor-
respondence between action sequences a and trees [8], so for
convenience in the rest of this paper, we will assume that we
are attempting to find the correct action sequence a.

At every step of the shift-reduce process, the score of each
action a is calculated by the following formula:

Score(S,Q, a) = wTf(S,Q, a). (1)

S is the stack and Q is the queue of the current step. f(S,Q, a)
creates a feature vector given S, Q, and a, and w is the corre-
sponding feature weight vector. The score of an action is the
weighted sum of each feature of the current stack, queue and
the corresponding action.
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There are two ways to build dependency trees with the shift-
reduce algorithm: greedy search and beam search. With greedy
search, at each step the action with highest score is chosen. We
repeat this process until both the stack and the queue are empty.
With beam search, we choose a beam size k. At each step we
define the score of the sequence of actions a = a1, . . . , aM by
the formula:

Score(a) =

M∑
i=1

Score(Si−1, Qi−1, ai), (2)

Si and Qi are the stack and queue resulting from action ai in
sequence A. At each step, a set of new sequences of actions is
generated by applying each of the 3 actions to the k sequences
in the beam from the previous time step and choose the best k
from the resulting sequences. Previous research has found that
beam search achieves better accuracy [9, 10], and thus, we use
beam search in the rest of this paper. Our parser is also capable
of labeled parsing, in which the parser predicts not only the de-
pendency arc, but also the grammatical relation represented by
the dependency [11]. This can be done by simply augmenting
LEFT and RIGHT with dependency labels.

2.2. Structured perceptron with latent variables

The structured perceptron is a structured classifier introduced
by Collins [12]. We assume a set of I training examples
{〈x1,a1〉, . . . , 〈xI ,aI〉} where xi is a sequence of observa-
tions and ai is the corresponding action sequence for xi. Let
w be the weight vector and function f(x,a) be the feature
vector function calculated from observations x and action se-
quence a. The algorithm processes every sample in the training
data one-at-a-time, first performing the decoding step to obtain
the highest scoring action sequence a′i. Next, if a′i is differ-
ent from the gold sequence ai then we update the weights by
increasing their value by the feature vector of the correct se-
quence f(xi,ai) and decreasing its value by the features of the
1-best parse f(xi,a

′
i).

Recently, the perceptron has also been extended to handle
additional latent variables [13, 11]. Given the sequence of labels
a = a1, . . . , aM , in the latent structured perceptron, assume
that we have some latent information expressed as a sequence
of hidden variables h = h1, . . . , hM . We assume that each
label a corresponds to a set of latent labels Ha, and that the
sets of latent labels for each a are disjoint from each other. For
example, Bohnet and Nivre [11] considered the case of depen-
dency parsing without POS tag information. In this case, x is
the sequence of words of input sentence. a is sequence of stan-
dard shift-reduce actions, while h further appends a POS tag to
each of the actions. The training algorithm for the structured
perceptron with latent variables is described in Algorithm 1.

The training algorithm is very similar to the normal struc-
tured perceptron except for a few minor modifications. In the
decoding step, the result is the sequence of latent variables h′i
that has the highest score among all sequences of latent vari-
ables. Then we make a projection from the sequence of la-
tent variables h′i to a sequence of labels a′i in which a′i,j is
chosen such that h′i,j ∈ Ha′

i,j
. We then compare this pro-

jected sequence with the true sequence ai and if they are dif-
ferent, perform a perceptron update. When we perform an up-
date, we would like to update towards the “correct” sequence
of latent variables. However, since the correct sequence of la-
tent variables is unobservable, we choose the sequence hi that
has highest score but satisfies the constraint ai = project(hi).
This step is called forced decoding, which we express using the

Algorithm 1 Structured perceptron with latent variables
Input: Set of training samples D.
Init: Feature vector w = 0.
for iter ← 1,max do

for (xi,ai) ∈D do
h′i = decode(w,xi)
a′i = project(h′i)
if a′i 6= ai then

hi = forced decode (w,xi,ai)
w = w + f(xi,hi) - f(xi,h

′
i)

forced decode(·) function. For updating, the features are cre-
ated from sequences of observations and latent variables.

3. Dependency parsing with latent pause
information

3.1. Using pause information as latent variables

Previous work [3] has shown that syntactic structure has an im-
portant role in pause prediction. However, to our knowledge
there are no models that tackle dependency parsing and pause
prediction jointly. Thus in this paper, we build on the recent
success of latent variable models for joint dependency parsing
and POS tagging [11], proposing a latent variable joint model
for pause prediction and dependency parsing. To do that, we
modify the shift-reduce algorithm to be able to perform the two
tasks jointly. Specifically, we divided pauses into two classes:

NoPause: no pause is perceivable to the human ear.
Pause: a pause perceivable to the human ear exists.
Next, we create a new set of actions:
RIGHT: same as standard shift-reduce.
LEFT: same as standard shift-reduce.
SNONE: same as SHIFT, for words preceded by NoPause.
SPAUSE: same as SHIFT, for words preceded by Pause.

Each SHIFT action in a sentence corresponds to a single word,
and thus the set of actions above allow us to perform pause pre-
diction for each word in the sentence. By using these new ac-
tions, our parser can both predict the syntactic structure and the
pauses between words in parallel. The bold, red line and words
in Figure 1 show this additional latent information. In this case,
we predict that there is a pause between two words “play” and
“football” and thus the action shift-pause (SPAUSE) is chosen.

With the modified set of shift-reduce actions, if we have
data annotated with both pauses and dependency syntax, the
model can be trained using the normal structured perceptron.
However, because creating data with both manually checked
pauses and manually checked parse trees is laborious, we can-
not obtain this data in large quantities. Since the quantity of
data is insufficient, the parsing accuracy of a model trained on
such data will not be very high. However, if we were able to
use syntactic data without pauses to increase dependency pars-
ing accuracy, this could potentially increase the accuracy of the
model as a whole.

Thus we envision a training setting in which we have a
large set of text data Dt annotated with only syntax trees, and
a smaller set of speech data Ds annotated with syntax trees and
pauses. In order to train on the data that is not annotated with
pauses, the proposed method treats pauses as latent variables.
Thus, we use the standard structured perceptron on our small
set of data Ds annotated with both types of information, and
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Algorithm 2 Training algorithm for the proposed model.
Input: Set of training samples D = Dt ∪Ds.
Dt is the set of text data with only syntax.
Ds is the set of speech data with syntax and pauses.
Init: Feature vector w = 0.
for iter ← 1,max do

for (xi,ai) ∈D do
if (xi,ai) ∈Dt then . latent perceptron

h′i = decode(w,xi)
a′i = project(h′i)
if a′i 6= ai then

hi = forced decode(w,xi,ai)
w = w + f(xi,hi) - f(xi,h

′
i)

else . standard perceptron
h′i = decode(w,xi)
if h′i 6= hi then

w = w + f(xi,hi) - f(xi,h′i)

the latent perceptron on Dt annotated with only syntax infor-
mation.

By modifying the standard algorithm, we can train the
model on the combined data as shown in Algorithm 2.

3.2. Features

Most of the features used in our model were adopted from pre-
vious work [5, 7, 10]. We define S as the stack to store the

Features

Single word: S−1w, S−1p, S−1wp, S−1wi, S−2w,
S−2p, S−2wp, S−2wi, S−3w, S−3p, S−3wp, S−3wi,
Q0w, S0p, Q0wp, Q0wi.
Two words: S−3−2w, S−3−2p, S−3−2wp, S−2−1w,
S−2−1p, S−2−1wp, S−1Q0w, S−1Q0p, S−1Q0wp,
S−2wpS−1wp, S−2pS−1wp, S−2wS−1wp,
S−2wpS−1w, S−2wpS−1p, S−1wpQ0wp,
S−1wpQ0p, S−1wpQ0w, S−1wQ0wp, S−1pQ0wp.
Three words: S−3−2−1w, S−3−2−1p, S−2−1Q0w,
S−2−1Q0p.
Index+Distance: S−1wi, S−1pi, Q0wi, Q0pi,
S−1Q0wd, S−1Q0pd.
Modifiers: S−3lw, S−3lp, S−3rw, S−3rp, S−2lw,
S−2lp, S−2rw, S−2rp, S−1lw, S−1lp, S−1rw,
S−1rp.
Previous word: Q−1w, Q−1p,Q−10w, Q−10p.

Table 1: List of features

dependency structure that has been built so far and Q to be the
queue storing the input sentence. S−3, S−2 and S−1 are the top
three elements of the stack, Q0 is the first element in the queue
and Q−1 is the one before it in the sentence. In Table 1, w in-
dicates the surface form of the word, and p indicates its part-of-
speech (POS) tag. For example, S−1Q0wp is the combination
of text and POS tag of the word on the top of the stack and the
first word in the queue. We also define features regarding mod-
ifiers of stack items, where l indicates the leftmost modifier and
r indicates the rightmost modifier of the word. The position of
the word in the sentence is also used in our model where i in-
dicates the index of the word (starting at 1 for the first word in
the sentence). Finally, we define features over distance between

two words denoted as d.

4. Experiments
4.1. Experimental setup

We conducted experiments to test the effectiveness of the pro-
posed joint dependency parsing and pause prediction model. To
do so, we first prepare both text and speech data.

Text: As text data, we used the Wall Street Journal Section of
the Penn Treebank [14], the standard data set for English
parsers’ experiments. Following convention, sections 2-
21 were used for training, section 23 was used for testing
and sections 22&24 were used for development.

Speech: As speech data, we used the NAIST-NTT Ted Talk
Treebank [15], which is a corpus of TED talks annotated
with syntactic structure. We manually annotated all talks
in the treebank with audibly perceptible pauses by first
performing forced alignment using an ASR system [16]
to automatically detect sections of silence, then having a
human annotator manually correct these pauses.1

Details of the size of each data set are shown in Table 2. We cre-
ated models on two different sets of data: TED and TED+WSJ.
Test sets from WSJ and TED were used to measure the accuracy

Data Set Train Test

WSJ 39,832 2,416
TED 822 395

Table 2: Data size in sentences

of dependency parsing. To measure the performance of pause
prediction, only test data from TED was used. The beam size
used for beam search is fixed at 12 in all experiments.

We compare with two baseline models: “All Pause” and
“Dec. Tree.” “All Pause” is a trivial baseline that always se-
lects pauses for every word. ”Dec. Tree” is a model based
on a research by Hirschberg and Prieto [2] that used decision
trees for learning intonational phrasing rules. We adopted their
work for a baseline model for pause prediction task. Due to the
differences between the two tasks, we only use a subset of their
features relevant to our task, specifically POS tags of the current
word, previous word and the combination of them. Finally, to
examine the effect of predicting both syntax and pauses jointly,
we test a “Pipeline” built by using two separate models, the first
one is a normal parser model trained on WSJ data and the sec-
ond is a joint model trained on TED data. Then, we use the first
model to predict parse trees on TED test data and used these
trees for forced decoding using the second model. As an eval-
uation measure for pause prediction, we use pause prediction
F-measure:

F =
2× precision× recall

precision+ recall
. (3)

Statistical significance of accuracy differences between meth-
ods was measured using pairwise bootstrap resampling with
95% confidence [17].

1Note that the written text in WSJ is likely slightly different in syn-
tax than TED talks, but previous work [15] has shown that WSJ is data
is still useful in parsing of TED speech.
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Figure 2: Influence of WSJ data on pause prediction F-measure.

4.2. Results

First, we show precision, recall, and F-measure for the pause
prediction task in Table 3. All the models in this table are
trained using the unlabeled parsing method. If we first compare
the first three rows, it is clear that our joint dependency parsing
and pause prediction model performs better than the baseline
models. Next, and more interestingly, we can see that adding
WSJ data greatly improves recall and F-measure. This is no-
table, because the WSJ data contains no annotation of pauses,
demonstrating that by improving the accuracy of parsing itself,
we were able to improve pause prediction as well.

To examine this relationship in more detail, in Figure 2 we
show results of pause prediction F-measure for various sizes
of WSJ data. Although the increase is not entirely consistent,
we can see that in general by adding more WSJ data to TED
data, we improve F-measure for pause prediction significantly.
We also performed experiments on both unlabeled parsing and
labeled parsing. From the chart, the difference is not consistent,
although labeled parsing tends to achieve slightly higher scores.

Finally, we examine the effect of latent pauses on depen-
dency parsing accuracy. In this test, accuracy was measured
using UAS - Unlabeled Attachment Score. Compared to a
standard model that used no latent pause information, the pro-
posed model achieved essentially the same accuracy, with UAS
scores for the standard and proposed models being 91.32% and
91.25% on WSJ, and 85.26% and 85.54% on TED respectively.

Model Data P R F

All Pause — 6.99% 100.00% 13.07%
Dec. Tree TED 37.77% 3.42% 6.28%
Parser TED 26.78% 12.90% 17.41%
Pipeline TED+WSJ 27.87% 17.74% 22.19%
Parser TED+WSJ 26.41% 32.06% 28.96%

Table 3: Pause prediction precision, recall and F-measure. Bold
indicates a statistically significant gain over other methods.

5. Conclusions
In this paper, we introduced a method that is able to jointly
perform dependency parsing and pause prediction. Our model
achieved an F-measure of 28.96% on our pause prediction task,

surpassing several baselines. Our most notable result is that a
model trained on a combination of data annotated with pauses
and syntax, as well as data annotated with only syntax achieved
better results on pause prediction than when using only the data
annotated with pauses. In the future, we hope to adapt this latent
variable model to other tasks such as joint dependency parsing
and disfluency detection.
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