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1 Introduction
Part-of-speech tagging, text chunking, and named en-

tity recognition are fundamental tasks in NLP. High per-
formance approaches have been dominated by applying
statistical models such as CRF, SVM, or perceptron mod-
els to hand-crafted features [24, 37, 12, 27, 23]. How-
ever, Collobert et al. [6] proposed an effective neural
network model that requires little feature engineering
and instead learns important features from word vectors
trained on large quantities of unlabeled text – an ap-
proach made possible by recent advancements in training
algorithms permitting deep architectures [32] and unsu-
pervised learning of word vectors from big data [5, 26].

Unfortunately there are many limitations to the model
proposed by Collobert et al. [6]. First, it uses a sim-
ple feed-forward neural network (FFNN), which restricts
the use of context to a fixed sized window around each
word – an approach that discards useful long-distance
relations between words. Second, being modeled around
word vectors, it is unable to exploit explicit character-
level information such as prefix and suffix, which could
be useful especially with rare words where word vectors
are poorly trained. We seek to address these issues by
proposing a more powerful neural network model.

A well-studied solution for a neural network to pro-
cess variable length input and have long term memory
is the recurrent neural network (RNN) [14]. Recently,
RNNs have shown great success in diverse NLP tasks
such as speech recognition [15], machine translation [4],
and language modeling [25]. The long-short term mem-
ory (LSTM) unit with the forget gate allows highly non-
trivial long-distance dependencies to be easily learned
[11]. For sequential labeling tasks, a bidirectional LSTM
model can take into account any arbitrary amount of con-
text on both sides of a word and eliminates the problem
of limited context that applies to FFNNs [15].

Similarly, convolutional neural networks (CNN) have
become popular in image processing for feature extrac-
tion. Recently, CNNs have been successfully employed
to extract character-level features for POS tagging [19]
and NER [7]. Other variants have been applied to tasks
requiring tree structures [2]. However, character-level
CNNs have not been extensively evaluated for English.

Our main contribution lies in combining these neural
network models for POS tagging, chunking, and NER.
We present a hybrid model of bidirectional LSTMs and
CNNs that learns both character- and word-level fea-
tures, presenting the first evaluation of such an archi-
tecture on well-established English evaluation datasets.

2 Model
Our neural network is inspired by the work of Collobert

et al. [6], where feature vectors are computed by lookup

tables and concatenated together, and then fed into a
multi-layer network. Instead of a FFNN, we use the more
powerful bidirectional long-short term memory (BLSTM)
network. We also add CNNs to our network to induce
character-level features [8, 19].
2.1 Core Features
2.1.1 Word Vectors

Our models use the 50-dimension word vectors and vec-
tor lookup table method of Collobert et al. [6]1 All words
are lower-cased before passing through the lookup table
to convert to their corresponding vectors. The vectors
are allowed to be modified during training.
2.1.2 Character Vectors

We randomly initialized a lookup table with values
drawn from an uniform distribution with range [−0.5, 0.5]
to output a character vector of 25 dimensions. The char-
acter set includes all unique characters in the CoNLL-
2003 dataset plus the special tokens PADDING, which is
used to pad the CNN; and UNKNOWN, which is used for all
other characters (which appear in other datasets). The
same set of random vectors were used for all experiments.
2.1.3 CNN-extracted Character Features

Figure 1 shows the CNN that extracts a fixed-length
feature vector from the characters of a single word. For
each word we employ a convolution and a max layer to ex-
tract a new feature vector from character vectors. Words
are padded with special PADDING characters on both sides
to fill the window of the CNN. The resulting vector is
concatenated with other word-level feature vectors.
2.2 Special Features
2.2.1 Capitalization Features

As capitalization information is erased during lookup of
the word vector, we evaluate Collobert et al.’s method of
using a separate lookup table to add a capitalization fea-
ture with the following options: allCaps, upperInitial,
lowercase, mixedCaps, other [6].
2.2.2 Suffix Features

Suffix features are widely used in POS tagging systems.
We evaluate Collobert et al.’s approach [6], creating a
lookup table of vectors for two-character suffixes. We
extracted 706 unique suffixes from the CoNLL-2012 data.
2.2.3 POS Tags

As Collobert et al. [6] report that POS tags signifi-
cantly improves chunking performance, we evaluate their
POS tag encoding method with tags from our tagger.
2.2.4 Lexicons

Almost all state of the art NER systems make use of
lexicons [31, 27, 9, 23]. We evaluate the lexicon encoding
approach of Collobert et al. [6].

1Part of SENNA: http://ml.nec-labs.com/senna/.
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Figure 1: The BLSTM-CNN architecture. Multiple lookup tables compute the word vector and the word-level
features. The CNN extracts character features from the character vectors corresponding to each word, which are
concatenated and fed to the BLSTM network. The output layers decode BLSTM output into a tag category score.

2.3 Sequence Labeling with BLSTMs
Following Graves et al. [15], we employed a stacked

BLSTM to transform the extracted word features into a
distribution of tag scores. Figure 1 describes the network.
The extracted features of each word is fed into forward
and backward LSTM networks, each with multiple layers.
The output of each LSTM network at each time step
is fed through a linear layer and a log-softmax layer to
decode into log-probabilities for each tag category, which
are added together to produce the final output.
2.4 Training and Inference

We implement the neural network using the torch7 li-
brary.2 Training and inference are done on a per-sentence
level. The initial states of the LSTM are zero vectors.
Except for the character and word vectors, all lookup ta-
bles are randomly initialized from the standard normal
distribution. For chunking and NER, we use the BIOES
tag scheme, as it was reported to perform best [31].
2.4.1 Objective Function and Inference

We train our network following Collobert et al. [6], us-
ing the Viterbi algorithm to find the maximum sentence-
level log likelihood tag sequence at inference time.
2.4.2 Learning Algorithm

Training is done by mini-batch SGD with a fixed learn-
ing rate. Each mini-batch consists of multiple sentences
with the same number of tokens. We apply dropout to
the input and output nodes of each LSTM layer to re-
ducing overfitting [28]. We carried out hyper-parameter
selection for POS tagging and chunking with Optunity’s
implementation of the particle swarm algorithm,3 how-
ever, due to time constraints NER hyper-parameter selec-
tion uses random search. Table 2 shows the final values.

3 Evaluation
Table 1 gives an overview of the datasets used. For

POS tagging, we evaluated on OntoNotes 5.0 [16]. For
chunking, we evaluated on the CoNLL-2000 dataset [39].
For NER, we evaluated on both the CoNLL-2003 NER
shared task dataset [40] and OntoNotes 5.0 [29]. We ran
each experiment multiple times and report the average
and standard deviation of at least 6 successful trials.
3.1 Dataset Preprocessing

For all datasets, we do the following preprocessing:
• All digit sequences are replaced by a single “0.”
• Before training, we group sentences by word length

into mini-batches and shuffle them.
2http://torch.ch
3http://optunity.net

In addition, in order to handle numeric NEs in the
OntoNotes NER dataset, we split tokens before and after
every digit when performing NER experiments.
3.2 OntoNotes 5.0 Dataset: POS tagging

For POS tagging we applied our model to the CoNLL-
2012 dataset [30] from the OntoNotes corpus. Manning
[24] argued that the OntoNotes is ideal for evaluation be-
cause it corrects many tag errors in the PTB and contains
text from many different domains, which provides a fairer
picture of performance in the general use case. However,
this means our results are not directly comparable to
other published results, so in order to compare, we down-
loaded the publicly available systems and re-trained the
models on the CoNLL-2012 training set whenever possi-
ble. Since some models could not be retrained, we also
evaluate the provided models on CoNLL-2012 data.
3.3 CoNLL-2000 Dataset: Chunking

We applied our system to the chunking task on the
CoNLL-2000 dataset [39]. We performed hyper parame-
ter search with a held-out dev set that consists of around
2,000 sentences randomly selected from the training set.
Then we trained the model on the entire training set us-
ing the best hyper-parameters. We experimented with
tags from a POS model trained on the non-overlapping
portion of the CoNLL-2012 dataset.
3.4 CoNLL-2003 Dataset: NER

We tuned the hyper-parameters (Table 2) on the dev
set by random search and then trained our models on
both the training and dev sets.
3.5 OntoNotes 5.0 Dataset: NER

Following Durrett and Klein [9], we used the part of
the CoNLL-2012 shared task data [30] with gold-standard
NE annotations. Due to time constraints we reused the
CoNLL-2003 hyper-parameters and tuned the number of
epochs and learning rate based on dev set performance.

4 Results and Discussion
4.1 Part-of-speech Tagging

Table 3 shows our results on POS tagging compared to
other published systems. Because OntoNotes has a much
wider domain than the Penn Treebank and a slightly
different tag set, the publicly released models all suf-
fer a large performance penalty when evaluated on the
OntoNotes dataset. However, after retraining, most per-
form similar to the PTB. As our system performs sig-
nificantly4 better than the retrained models from strong
systems, it is likely competitive with the state-of-the-art.

4Two-sample t-test, p < 0.0001 assuming similar variance.
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Dataset Train Dev Test
OntoNotes (POS) 1,299,312 163,104 169,579
CoNLL-2000 211,727 N/A 47,377
CoNLL-2003 204,567 51,578 46,666

(23,499) (5,942) (5,648)
OntoNotes (NER) 1,088,503 147,724 152,728

(81,828) (11,066) (11,257)

Table 1: Dataset size in # of tokens (# of named entities)
4.2 Chunking

Table 3 shows our results on chunking compared to
other published systems on the CoNLL-2000 dataset.
With just word vectors, our system readily improves over
most other published systems. With POS tags, however,
our system significantly outperforms all other systems5

except for Shen and Sarkar [34], which uses a voting en-
semble of models trained on different tag schemes.
4.3 Named Entity Resolution

Table 3 shows the results for all datasets. Our best
model is competitive with other state of the art sys-
tems on the CoNLL-2003 dataset, and for the OntoNotes
dataset, to the best of our knowledge we have surpassed
the previous highest reported results on all of preci-
sion, recall, and F1-score. In particular, word vectors
and character-level features (produced by the CNN) con-
tributed most of the performance, suggesting that when
given enough data, the neural network is able to learn
the relevant features for NER without feature engineer-
ing. Detailed NER evaluation can be found in [3].
4.4 Special Features
4.4.1 CNNs vs. Capitalization Features

Table 3 show that BLSTM-CNN models significantly6

outperform the BLSTM models when only word vec-
tors are used. Moreover, for POS-tagging and NER on
OntoNotes, the BLSTM models using all hand-crafted
features cannot surpass the BLSTM-CNN models using
only word vectors. Furthermore, while capitalization im-
proves BLSTM-CNN a small amount for every task ex-
cept POS tagging, the effect disappears when special fea-
tures are added. These results suggest character-level
CNNs can replace explicit character-level features.
4.4.2 POS tagging: Suffix Feature

Table 3 shows that the suffix feature slightly degrades
performance and capitalization does not influence perfor-
mance, suggesting that the CNN has learned more gen-
eralized character-level features.
4.4.3 Chunking: POS Tag Feature

While our BLSTM-CNN model, with only word vec-
tors, improves over all previous neural network models,
adding a POS tag feature with our tagger significantly7

improves results and allows our system to rival the best
published result by Shen and Sarkar [34]. We suspect
that this is because our tagger is more accurate.
4.4.4 NER: Lexicon Features

Table 3 shows that on both the CoNLL-2003 and
OntoNotes 5.0 datasets, adding Collobert et al. [6] lexi-
con features to our model provides a large gain,8 showing
that lexical knowledge is still crucial to performance.

5Two-sample t-test, p < 0.0001 assuming similar variance.
6Wilcoxon rank sum test, p < 0.0005.
7Wilcoxon rank sum test, p < 0.0001.
8CoNLL-2003: Wilcoxon rank sum test, p < 0.001.
9Evaluation on OntoNotes 5.0 done by Pradhan et al. [29]

10CoNLL-2003 results from [23]. OntoNotes results from [9].
11We attempted to retrain using the released Python script, but

we are unsure of the cause of the disappointing result.
12It was unclear whether or not they evaluated their system on

Hyper- OntoNotes CoNLL-2000 CoNLL-2003 OntoNotes
parameters (POS) (Chunk) (NER) (NER)
CNN width 5 5 3 3
CNN output 49 66 20 20
LSTM states 275 350 200 200
LSTM layers 2 2 2 2
Learning rate 0.0121 0.0145 0.0166 0.008
Epochs 20 20 100 18
Dropout 0.56 0.50 0.63 0.63
Mini-batch 9 9 9 9

Table 2: Final hyper-parameter values for all experiments

5 Related Research
5.1 Part-of-speech Tagging

POS taggers are typically classifiers trained on vari-
ous windowed, hand-crafted features, with bidirectional
decoding, and evaluated on the PTB. These include
maxent with bidirectional dependency networks [41, 24],
SVMs [13], and other learning algorithms [35, 37, 42, 38],
who all use similar features. Søgaard [36] used semi-
supervised condensed nearest neighbor with SVMTools
[13] and UnSuPOS [1] output to achieve the non-NN
state-of-the-art.

Competitive neural network approaches started with
the FFNN of Collobert et al. [6]. Dos Santos and
Zadrozny [8] added character-level CNNs to Collobert’s
network. POS tagging has also been attempted with bidi-
rectional RNN-CNNs in German [19], and for English,
BLSTMs [43] and bidirectional LSTM-CRFs [17]. Our
model combines these ideas into a BLSTM-CNN network
which achieves state of the art performance on OntoNotes
with minimal feature engineering. The best reported re-
sult on PTB is Ling et al. [22], which is similar but uses
BLSTMs with compositional character vectors.
5.2 Chunking

Common approaches to chunking include SVM [18, 44,
20], Winnow [45], CRFs [33], and guided learning [12].
Shen and Sarkar [34] achieve the current state of the art
with ensemble voting over multiple chunk annotations.

Neural network approaches are similar to POS tagging,
and include FFNNs [6], BLSTMs [43], and BLSTM-CRFs
[17]. We differ by using character-level CNNs.
5.3 Named Entity Recognition

Most recent approaches to NER has been characterized
by feature engineering-dependent models, such as CRFs.
Ratinov and Roth [31] used non-local features, gazetteer
extracted from Wikipedia, and Brown-cluster-like word
representations. In leu of a lexicon, Lin and Wu [21]
used phrase features obtained from k-means clustering of
search engine query logs, and Passos et al. [27] trained
phrase vectors. Finkel and Manning [10] did joint parsing
and NER. Training an NER system together with entity
linking has recently been shown to improve the state of
the art. Durrett and Klein [9] achieved state of the art re-
sults on OntoNotes by combining coreference resolution,
entity linking, and NER into a single CRF model with
cross-task interaction factors. Luo et al. [23] achieved
the current CoNLL-2003 state of the art by training a
joint NER/entity linking model.

Collobert et al. [6] employed a deep FFNN and word
vectors to achieve near state of the art results on POS
tagging, chunking, NER, and SRL. We build on their
approach, sharing their word vectors, feature encoding
method, and objective functions. Recently, CharWNN
[7] augmented the FFNN of Collobert et al. [6] with
character-level CNNs to improve performance on Spanish

the CoNLL-2012 split of the OntoNotes dataset.
13Numbers taken from [23]. It is unclear which figure is correct.
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Model
POS Tagging Chunking NER

PTB OntoNotes / CoNLL-2012 CoNLL-2000 CoNLL-2003 OntoNotes 5.0
- Existing Retrained F1 Prec. Recall F1 Prec. Recall F1

Sha and Pereira [33] - - - 94.38 - - - - - -
Gimenez and Marquez [13] 97.16 93.03 97.02 - - - - - - -
Shen and Sarkar [34] - - - 95.23 - - - - - -
Shen et al. [35] 97.33 93.21 - - - - - - - -
Finkel and Manning [10]9 - - - - - - - 84.04 80.86 82.42
Lin and Wu [21] - - - - - - 90.90 - - -
Ratinov and Roth [31]10 - - - - 91.20 90.50 90.80 82.00 84.95 83.45
Spoustová et al. [37] 97.44 92.90 - - - - - - - -
Gesmundo [12] - - - 94.56 - - - - - -
Manning [24] 97.32 92.22 97.31 - - - - - - -
Søgaard [36] 97.50 - 91.4111 - - - - - - -
Tsuruoka et al. [42] 97.28 93.16 97.39 - - - - - - -
Passos et al. [27]12 - - - - - - 90.90 - - 82.30
Durrett and Klein [9] - - - - - - - 85.22 82.89 84.04
Sun [38] 97.36 - - - - - - - - -
Luo et al. [23]13 - - - - 91.50 91.40 91.20 - - -
Collobert et al. [6] 97.20 - - 93.63 - - 88.67 - - -
Collobert et al. [6] + special 97.29 92.96 - 94.32 - - 89.59 - - -
Ling et al. [22] 97.78 - - - - - - - - -
Huang et al. [17] 97.55 - - 94.46 - - 90.10 - - -
Wang et al. [43] 97.26 - - 94.59 - - 89.64 - - -
BLSTM - - 95.43 (± 0.05) 90.33 (± 0.19) 80.38 73.95 77.03 (± 0.53) 79.68 75.97 77.77 (± 0.37)
BLSTM + vec - - 96.55 (± 0.04) 94.28 (± 0.09) 88.31 87.11 87.71 (± 0.30) 82.85 82.59 82.72 (± 0.23)
BLSTM + vec + caps + special - - 97.58 (± 0.02) 95.11 (± 0.11) 90.33 91.22 90.77 (± 0.61) 85.89 86.35 86.12 (± 0.26)
BLSTM-CNN - - 97.35 (± 0.03) 93.05 (± 0.20) 82.95 83.75 83.35 (± 0.35) 82.58 82.49 82.53 (± 0.40)
BLSTM-CNN + vec - - 97.64 (± 0.03) 94.58 (± 0.10) 90.22 90.93 90.57 (± 0.45) 86.05 86.37 86.21 (± 0.20)
BLSTM-CNN + vec + caps - - 97.64 (± 0.03) 94.65 (± 0.12) 90.28 91.10 90.69 (± 0.29) 86.16 86.54 86.35 (± 0.28)
BLSTM-CNN + vec + special - - 97.59 (± 0.02) 95.15 (± 0.08) 90.74 91.53 91.13 (± 0.15) 86.16 86.65 86.40 (± 0.21)

Table 3: Results for POS tagging, chunking, and NER with various feature sets. The three sections are, in order,
non-neural network models, neural network models, and our models. “lex” = Collobert’s lexicon, “caps” = capital-
ization features, “special” = task-specific special features (Section 2.2). Standard deviations are in parentheses.

and Portuguese NER. We have successfully incorporated
similar character-level CNNs into our model.

Our approach is most similar to the recent Bi-LSTM-
CRF model for POS tagging, chunking, and NER pre-
sented by Huang et al. [17], the BLSTM RNN model
proposed by Wang et al. [43], and the Bi-RNN model
for POS tagging presented by Labeau et al. [19]. Our
approach differs from Huang et al. [17] in that we use
character-level CNNs instead of hand-crafting word fea-
tures. Unlike Labeau et al. [19], we employed LSTMs.

6 Conclusion
We have shown that our neural network model, which

incorporates a bidirectional LSTM and a character-level
CNN, achieves results competitive with the state-of-the-
art in POS tagging, chunking, and NER, significantly
improving over previous neural networks. Our model re-
ports a new state-of-the-art on OntoNotes for POS tag-
ging and NER without any hand-crafted features or ex-
ternal knowledge. Evaluation showed that our character-
level CNNs learned more effective character-level features
than hand-crafted features like capitalization and suf-
fix, further reducing the burden of feature engineering.
We also found a sweet spot in knowledge engineering:
by adding POS tags from our tagger to chunking and
publicly-available lexicons to NER, our system is com-
petitive with the CoNLL-2000 and 2003 states-of-the-art.
We are also currently working on a Japanese system.
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