
言語処理学会 第22回年次大会 発表論文集 (2016年3月)

A Grammar and Dependency Aware Search System for
Japanese Sentences

Arseny Tolmachev Hajime Morita Sadao Kurohashi
Kyoto University, Graduate School of Informatics

{arseny, morita}@nlp.ist.i.kyoto-u.ac.jp, kuro@i.kyoto-u.ac.jp

Abstract
Example sentences are useful both for language
learners and linguists. Often users have a need to
find the usage of a grammatical structure while hav-
ing parts of speech tags instead of some words in
the query. We have implemented a high-performance
search engine that is able to process grammatical de-
pendencies and parts of speech information in queries
from a large scale corpus.

1 Introduction
General search systems like Google or Microsoft Bing
are designed for searching documents relevant to a
specific query. Such documents are usually long
pieces of text, for example web pages. Language
learners and teachers use such systems for acquir-
ing example usages or contexts for words they learn.
However, general search systems are not well-suited
for this task. Firstly, users doing such search are
not looking for documents, they are looking for sen-
tences. Additionally, conventional search engines ig-
nore grammatical information when indexing text,
although this data is extremely useful for finding ex-
ample usages of words.

Searching sentences for educational and linguistic
usage often requires more features than just querying
on terms as general systems do. Sentence level search
should support queries not only on lexical level, but
on lexical dependencies, part of speech (POS) tags,
conjugation forms and grammatic words like case
markers (が, を) or auxiliary verbs (いる after テ
form) as well. Usually, users want to find usages
of a word in some context.

Understanding onomatopoeia is difficult for many
Japanese language learners. Example sentences like
肌がピリピリする are mostly for learners, because
they give no idea about what ピリピリ is. Hav-
ing sentences like 肌がピリピリ痛く感じる are sub-
stantially better in this case. It can be said that
a system should give users an ability to choose “a
form” of context for the word. Additionally, a sys-
tem should be able to work with huge amount of

data, because context patterns are usually sparse.
At the same time, to be useful the system should
give replies quickly.

We have implemented a distributed high-
performance sentence level search system for
Japanese language that is able to process queries
with not only lexical information, but grammatic
words and lexical dependency information as well.
The system achieves less than 300 ms query times
for 90% of queries when 700M sentences are indexed.

The proposed system architecture consists of two
main parts: compressed database and search core.

Search core is based on Apache Lucene1 with ad-
ditional components for dependency and POS tag
support for indexing and querying. Furthermore, in
order to support fast queries on huge corpora, the
system is implemented in a distributed master-slave
like manner. Distribution was done using actor pro-
gramming model and Akka library2.

2 Related work
Sentence search tools are related the most to corpus
management and exploration tools. However, there
are not many tools which use structural information.
Jakubíek et al. implements a syntactic corpus search
system [1]. This system focused on searching using
constituency instead of dependency syntactic struc-
tures. Also the system was not a search engine and
query times on sentences structure were in orders
of tens of minutes which renders working with huge
corpora impossible.

For Japanese language, dependencies are used in
search as well [2, 3]. TSUBAKI search system [2] uses
dependency trees for indexing and querying and it is
distributed. However it is a document-level search
system and does not allow doing queries using POS
information. A system proposed by Takeuchi and
Tsujii [3] uses dependency information, however does
not allow to use grammatical and dependency infor-
mation. It has more focus on handling paraphrases.
Recent versions of Chaki (茶器) corpus management

1https://lucene.apache.org/core/
2http://akka.io/

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 593 ―

https://lucene.apache.org/core/
http://akka.io/

tool3 support queries using dependencies, lexical and
part of speech information, however it is not a search
engine – it was not designed for a scale of several
hundred millions sentences.

3 Query language & examples
Japanese language has no natural word boundaries
symbols and the definition of a morpheme varies
from one analyzer to another. In this sense, writ-
ing queries using sub-bunsetsu units is going to be
difficult and error-prone, therefore another approach
was taken. Search system query language is designed
by adding special symbols to plain Japanese. The list
of special symbols is [-,→*~]. Minus (-) has its usual
meaning as in typical search system: absence of a
term in search results.

A query is divided into parts by commas. Each
part is completely independent of others. Usually,
the whole query is a disjunction of its parts. General
search systems like Google use whitespace instead of
commas.

Dependency between two terms is specified by an
arrow symbol: “A→ B”, meaning B as a parent of
A. Arrows can be chained “A→ B→ C”, however in
this case both A and B would be treated as sibling
children of C. Sentence head can be specified as “A→
EOS”, where EOS is literal.

A star after a word means that you want to ignore
its conjugation information. For example, “食べる*”
would match any conjugation form of 食べる and
even食べない, however query “食べる” would match
only current (dictionary) form of the term. Only the
last conjugation is going to be ignored: “食べたい*”
will match 食べたくない, but won’t match 食べない.
Ignoring conjugations inside words is not supported
yet. For non-conjugatable POS this symbol is a no-
op.

A tilde (~) before a content word means to replace
it with its own POS tag. This means “~食べて” is
going to match aテ form of any verb. For grammatic
words this replacement is not supported presently.

Here are some example queries4 the system sup-
ports. A query “~物が→ぴりぴり→~動く*,-する*”
finds usages of onomatopoeia ぴりぴり in context,
but usages with する are difficult to understand and
are therefore ignored. Search results include sen-
tences like 寒さより肌がピリピリと痛く感じます。頬
がピリピリ凍る、京都の冬です。全身の神経がピリピ

リ緊張する。which are good examples for the ピリ
ピリ.

In the query “~書いた→ため,-ため→EOS” the ob-
jective is to find out usages ofため after past form of
verbs, so that it is not a head of the sentence. Search

3https://osdn.jp/projects/chaki/
4They are hyperlinks and clickable

results are sentences like 陰謀を暴いたために脅迫さ
れた.

For a query “いい加減→~やらない”, the objective
was to find unusual imperative-like usages of verbs
with いい加減 as a modifier. Results contained sen-
tences like その妄想いい加減やめない？ or 良い子は
いい加減止めない？ which are exactly the usages we
seek.

These types of queries are impossible to search
with a regular search engine.

Compressed

Database

Parsed

Corpus

1
2 3 4

Index

Storage

白い[過] 1,322,...
5,34,99,...
1,55,164,...

動[テ]
犬

犬→白かった

parent: 白い[過]
children:
　　犬

parent: 白い[過]
children:
　　犬

Raw Query

Reply

Query
Internal

Represention

Tree IDs
1,5231,...

私の犬はとても白かった

Lucene
Query

Search Core

Figure 1: System structure and querying workflow

4 System structure
Proposed system consists of two main architectural
parts, as shown on Figure 1: a compressed tree
database and a search core. The tree database stores
dependency parse trees in compressed form. They
are used to build replies to search queries. The search
core is built on Apache Lucene with custom tokenizer
and querying. Instead of content word morphemes,
tokens are created from parse trees in a way to make
it possible to issue queries on conjugation forms of
POS with grammatic words attached.

Current implementation uses KNP5 dependency
parser trees as input. KNP groups morphemes to
bunsetsu units which are useful units for human in-
terpretation. The search core uses KNP bunsetsu as
a core unit for further processing.

4.1 Compressed Database
The system operates on dependency trees as input.
Those trees should be extractable to create replies,
and because output of dependency parsers is rather
verbose, the data should be stored on disk in a com-
pressed form. However, usual compression tools do
not support random access to the compressed files.
Building a specialized compressed database over-
comes this limitation.

The compressed database consists of an index
stored as a B-tree using MapDB6 and data files. The

5http://nlp.ist.i.kyoto-u.ac.jp/EN/?KNP
6http://www.mapdb.org/

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 594 ―

http://lotus.kuee.kyoto-u.ac.jp/depfinder/search?q=%E3%80%9C%E7%89%A9%E3%81%8C%E2%86%92%E3%81%B4%E3%82%8A%E3%81%B4%E3%82%8A%E2%86%92%E3%80%9C%EF%BC%8A%E5%8B%95%E3%81%8F%E3%80%81-%EF%BC%8A%E3%81%99%E3%82%8B%E3%80%81%EF%BC%A0%E3%81%B4%E3%82%8A%E3%81%B4%E3%82%8A
http://lotus.kuee.kyoto-u.ac.jp/depfinder/search?q=%E3%80%9C%E6%9B%B8%E3%81%84%E3%81%9F%E2%86%92%E3%81%9F%E3%82%81,-%E3%81%9F%E3%82%81%E2%86%92EOS,@%E3%81%9F%E3%82%81%E3%81%AB
https://osdn.jp/projects/chaki/
http://lotus.kuee.kyoto-u.ac.jp/depfinder/search?q=%E3%81%84%E3%81%84%E5%8A%A0%E6%B8%9B%E2%86%92%E3%80%9C%E3%82%84%E3%82%89%E3%81%AA%E3%81%84
http://nlp.ist.i.kyoto-u.ac.jp/EN/?KNP

database index is a mapping from a tree id to a tree
compressed pointer and tree size pair. Data files con-
sist of 64 kilobyte blocks. Each block is archived in-
dependently of others and saved to disk. There are
no inter-block dependencies, meaning that blocks can
be read in the arbitrary order. To extract a tree from
a data file, the system needs to read a block from
disk, decompress it, and get a tree from that block.
The information about the block and the position
inside the block can be stored in a single compressed
pointer.

Compressed pointer is a trick taken from the
bioinformatics BAM/BGZF7 storage format used for
storing DNA sequences in compressed files. Com-
pressed pointer consists of two parts: beginning of a
compressed block in a data file and offset of needed
data inside the decompressed block. Block sizes are
fixed to 64k and the 64-bit pointer can be formed
by making lower 16 bits to store the uncompressed
offset and the remaining 48 bits to store block start
address in the compressed file.

私は

私は

私
<名>は

ゆっくりと

ゆっくりと
ゆっくり
<副>と

白い

白い
<形>[基]

白い[基]

ご飯を

ご飯を

<名>を
ご飯

食べた

食べる[過]
食べる
<動>[過]

Input Bunsetsu

Tokens for
index

num=0

dep=4

parent=動
child={}

num=1

dep=4

parent=動
child={}

num=3

dep=4

parent=動
child={形}

num=4

dep=-1

parent=0
child={名,副}

num=2

dep=3

parent=名
child={}

Figure 2: Bunsetsu to token conversion for indexing
sentence “私はゆっくりと白いご飯を食べた”. Tokens
contain lexical information (black), POS tags (green)
and conjugation forms (magenta). Dependency in-
formation is common for a set of tokens spawned
from a single bunsetsu. This information consists of
bunsetsu number, dependency number, POS of par-
ent and set of children POS.

4.2 Search: Indexing
Speed of search engines comes from a special struc-
ture – inverse index – that is created from original
documents. Index is created from tokens which are
produced by analyzing input. For the proposed sys-
tem tokens are created from bunsetsu of input trees.
Each bunsetsu is numbered and has a dependency
number (number of a parent). Both of these num-
bers with POS information of bunsetsu children and
parent are transferred to tokens. Tokens are created
for each occurrence of the bunsetsu in the tree. When
stored to index they are inverted and become token
postings – information about documents which con-
tain a certain token.

Search systems work by fully matching query to-
kens with indexed ones and processing posting in-
formation linked to the tokens. The main objective

7http://samtools.github.io/hts-specs/SAMv1.pdf

behind the token design was to combine lexical and
grammatic information in a single place, meaning
that it could be both stored in index and at the same
time easily constructed from a search query. Adding
dependency information to these tokens enables an
implementation of a system to meet all the require-
ments stated in the introduction.

Tokens are generated from a bunsetsu in two steps.
The first step generates a seed token from the bun-
setsu. Token content is a concatenation of bunsetsu
morphemes. Morphemes with conjugatable POS are
represented by a lemma form with the conjugation
tag. For example, the verb 帰った would be repre-
sented as “帰る [過]”. Non-conjugatable POS mor-
phemes are represented by themselves.

The next step generates rewritten tokens from the
seed until no more new tokens can be created us-
ing rewriting rules. Rewriting is done by replacing
content word lexical information with part of speech
information or removing some parts of tokens. For
example, case markers of nouns are removed for some
rules. Actual rules are not presented because of space
limitations.

This representation allows to easily match same
forms of different words while getting the benefits
of reverse index in terms of performance. A list of
created tokens for raw sentence “私はゆっくりと白い
ご飯を食べた” is shown on Fig. 2.

Querying for single POS tag is not very useful –
it is going to match any document for most of POS
tags. In addition to that storing such tokens in the
index will consume much of the index space. How-
ever, search in a case when POS is a child or parent
of something is useful. Storing the information about
parent and children POS for each bunsetsu allows an-
swering POS dependency queries efficiently. By lim-
iting such information only to nouns, verbs, adverbs
and adjectives it is possible to store the POS depen-
dencies packed – using only one additional byte per
posting.

4.3 Search: Querying
Input search queries undergo two transformations.
The first transformation is to analyze input query
with a morphological analyzer and build an internal
query representation. This representation is trans-
ferred to actual working nodes, where internal query
representation is finally transformed to low level
Lucene queries.

Analysis of input queries is performed in two steps.
The first step removes special symbols from query re-
placing some of them with commas. This is done so
that special symbols do not interfere with the mor-
phological analyzer. This step is followed by morpho-
logical analysis using JUMAN. Results of the mor-
phological analysis are merged with the information
from special symbols forming internal query rep-

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 595 ―

http://samtools.github.io/hts-specs/SAMv1.pdf

resentation. Internal representation consists of one
or more parts, separated in a raw query by com-
mas. Each part consists of a parent with zero or
more children.

There are five Lucene queries used. Two are built-
in core queries and three are ad-hoc for using the
postings information. Core Lucene queries are term
and boolean queries. Boolean query is used to bind
multiple query parts together. A term queries is used
for parts without any children, because there is no
need to use dependencies.

Ad-hoc Lucene queries use information in postings
to select documents. The first one – packed term
query – is also an extension of the core term query.
It is used when a part has a POS-only parent or
child. Its specific work is to compare both child and
parent packed POS dependency from postings with
a reference created from the query part.

For query parts when at least one of the children is
not just a POS tag, the second one – dependency
query – is used. The main idea behind it is to find
trees which contain a conjunction of parent and all
the children from the query part. Also, for each
found tree, the child dependency numbers should be
equal to the parent bunsetsu number. POS-only chil-
dren are handled in the same way as in the packed
term query.

The last one is used for supporting queries of type
“A → EOS” which checks dependency numbers of
postings.

By default Lucene uses tf-idf similarity for result
ranking. Idf measure does not make any sense in
case of pos-like tokens, so only tf is used in the sys-
tem. Also, the length is normalized in a way so that
moderately long (4-5 bunsetsu) sentences gain the
highest score.

5 System state
The system is currently accessible online8. It is de-
ployed on 55 slave nodes and 1 master node of our
cluster system. The corpus used for search is a part
of web corpus, of 700M sentences (about 1TB of com-
pressed results of syntactic parse). Each node has
approximately 20GB of compressed trees stored in
the compressed database. The index size is 3GB per
node on average.

We have measured search response times in this
setting. In the experiment we used a list of 1600
queries that contains frequent verbs, nouns and ad-
jectives with dependency queries like “~私を→分かる
” with different frequent POS and words in parent
and child place. Queries from that list were run once
per 500ms and the response time was measured. For
each search, trees for top 100 results were extracted
from the database and sent as a response. 152179

8http://lotus.kuee.kyoto-u.ac.jp/depfinder/search

response times were collected. 99% were less than
424 ms, 90% were less than 285 ms; median and av-
erage response times were 26 ms and and 179 ms
respectively. We believe that current search speed is
reasonably good for general usage. We should note
however, that the system is presently deployed on a
shared cluster which runs programs by other users at
the same time, implying that dedicated installation
is going to have more stable performance.

The system uses results of an automatic morpho-
logical analyzer and parser, so there are errors in
analysis. Sentences with different words do appear in
search results because of it. With the improvement
of the analyzers this problem is going to disappear.

Source code of the system is going to be dis-
tributed under open-source license. It is also possible
to match arbitrary tree structure without modifying
indexing and tokenization, only on query level, how-
ever this has not been implemented yet.

6 Conclusion
We have developed a distributed large scale sentence
search engine that should be useful for linguists, re-
searchers, teachers and students studying Japanese.
It supports queries not only on lexical information,
but also on POS, grammatic and dependency infor-
mation as well. An installation that uses 700M sen-
tences from web is available on the Internet. 90%
of simple dependency queries get a response in 300
milliseconds.

A design of tokens which contained lexical, POS
and grammatic information at a single place allows
to use general search technology. Dependency trees
were stored in a specialized compressed database.

Acknowledgements

The first author thanks Japanese Government for the
support in Mongakubusho MEXT program for the
foreign students.

References
[1] Milo Jakubíek, Adam Kilgarriff, Diana McCarthy,

and Pavel Rychlý. Fast Syntactic Searching in Very
Large Corpora for Many Languages. In Proceedings
of the 24th PACLIC, pages 741–747, Tohoku Univer-
sity, Sendai, Japan, 2010. Workshop on Advanced
Corpus Solutions.

[2] Keiji Shinzato, Tomohide Shibata, Daisuke Kawa-
hara, and Sadao Kurohashi. TSUBAKI: An Open
Search Engine Infrastructure for Developing Infor-
mation Access Methodology. Journal of Information
Processing, 52(12):216–227, 2011.

[3] 竹内淳平 and 辻井潤一. 係り受け関係と言い換え関係
を用いた柔軟な日本語検索. In 言語処理学会第 11回年
次大会発表論文集, pages 568–571, 2005.

Copyright(C) 2016 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 596 ―

http://lotus.kuee.kyoto-u.ac.jp/depfinder/search

	Introduction
	Related work
	Query language & examples
	System structure
	Compressed Database
	Search: Indexing
	Search: Querying

	System state
	Conclusion

