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Abstract

Being able to understand videos can have
a great impact and can be useful to
many other applications. However, gen-
erated descriptions by computers often
fail to mention correct objects appear-
ing in videos. This work aims to alle-
viate this problem by including external
fine-grained visual information detected
from all video frames. In this paper,
we propose an LSTM-based sequence-to-
sequence model with semantic attention
for video description generation. The re-
sults show that using semantic attention to
selectively focus on external fine-grained
visual information can guide the system
to correctly mention objects in videos and
have a better quality of video descriptions.

1 Introduction

Automatic video description generation has been
tackled by the combination of RNN and CNN.
Venugopalan et al. (2015b) proposed the first end-
to-end system to translate a video into natural
language by extending the CNN-RNN encoder-
decoder framework for image captioning proposed
by Vinyals et al. (2014) to generate descriptions
for videos. They performed a mean pooling over
CNN feature vectors of frames to generate a single
vector representation for a video, and then use the
vector as input to the RNN decoder to generate a
sentence.

Later, they have proposed an RNN-based
sequence-to-sequence model for generating de-
scriptions of videos (Venugopalan et al., 2015a).
They used 2 layers of RNN for both encoding the
videos and decoding into sentences, so their model
is able to learn both a temporal structure of a se-
quence of video frames and a sequence model for
generating sentences.

However, one problem of video description
generation is that generated descriptions by com-
puters often fail to mention correct objects and
actions appearing in videos. Inspired by the im-
age captioning model with semantic attention pro-
posed by You et al. (2016), in this paper, we
present a sequence-to-sequence encoder-decoder
model with semantic attention mechanism, which
is a novel approach to integrate fine-grained visual
information appearing in video frames to help the
model generate descriptions. The results show that
the semantic attention mechanism can guide the
system to correctly mention objects and actions,
and a have better quality of video descriptions.

2 LSTM encoder-decoder model

Given an input xt, at time step t, one unit of an
LSTM can be formulated as

it = sigmoid(Wxixt +Whiht−1 + bi)

ft = sigmoid(Wxfxt +Whfht−1 + bf )

ot = sigmoid(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxgxt +Whght−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(1)

where it, ft and ot are input gates, forget gates,
and output gates. The symbol � represents the
element-wise multiplication. Wxi, Whi, Wxf ,
Whf , Wxo, Who, Wxg, Whg and bi, bf , bo, bg are
the parameters to be learned during training. ht
is the hidden state at time step t which will be an
input to the next time step’s LSTM unit.

2.1 Non-attention model

Figure 1 depicts our two-layer LSTM model for
generating description sentence from a video.
Given a video as a sequence of frames V =
{v1, v2, ..., vn} where the video V has n frames
and vt is the tth frame of the video. The input
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<BOS> a woman is cooking in the kitchen <EOS>
context vector

visual concept 
detector

cook, bowl, kitchen, 
woman, oven

= concatenation

Figure 1: System architecture of our model. In the figure, we omit the image embedding layer, the word
embedding layer, and the softmax layer, due to the space constraint.

frames xt can be described as

xt =

{
vt , t ≤ n
~0 , t > n

(2)

The video frames are taken as input one by one at
encoding time, and are set to ~0 at decoding time.
Then, we can formulate our the first (upper) LSTM
layer as

h
(1)
t = LSTM (1)(xt, h

(1)
t−1) (3)

where h
(1)
t is the hidden state of the first LSTM

layer, defined as LSTM (1), at time step t.

The input to the second (lower) LSTM layer is
the concatenation of the word generated on the
previous time step wt−1 and the hidden state of
the first LSTM layer.

h
(2)
t = LSTM (2)([wt−1;h

(1)
t ], h

(2)
t−1) (4)

where h(2)t is the hidden state of the second LSTM
layer, defined as LSTM (2), at time step t.

At encoding time, wt−1 is set to ~0 since there is
no word being generated. The distribution over all
the words at time step t can be computed by

p(wt|w1, ..., wt−1, V ) = softmax(Wsh
(2)
t + bs)

(5)

As with Venugopalan et al. (2015a), we have
xt = ~0 at encoding time and wt−1 = ~0 at decod-
ing time in order to use a single LSTM (for one
layer) that learns both encoding and decoding, so
the weights can be shared.

2.2 Semantic attention model
Given a set of visual concepts of the video S =
{s1, s2, ..., sk} where si can be represented by a
word vector in the same space as word input. The
second-layer LSTM at decoding time can be for-
mulated as

h
(2)
t = LSTM (2)([wt−1; ct;h

(1)
t ], h

(2)
t−1) (6)

where the context vector ct, at the time step t in
the decoding stage, is the weighted sum of visual
concepts.

ct =
k∑

i=1

at(i)si (7)

The weight at(i) is computed at every time step t
by

at(i) =
escore(h

(2)
t−1,si)∑k

j=1 e
score(h

(2)
t−1,sj)

(8)

where score(h(2)t−1, si) is the score function used to
calculate alignment weights between every visual
concept si and the hidden state h

(2)
t−1.

score(h
(2)
t−1, si) = v>a tanh(Wa[h

(2)
t−1; si]) (9)

The parameters Wa and va of the score function
are jointly learned during training.

3 Experiment

3.1 Dataset and pre-processing
We use Microsoft Research Video Descrip-
tion Corpus (MSVD) (Chen and Dolan, 2011)
which is a set of 1,970 Youtube clips with
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Model BLEU METEOR CIDEr ROUGE-L
Results reported by Venugopalan et al. (2015a)
Mean pooling (VGG16) - 0.277 - -
Sequence to sequence (VGG16) - 0.292 - -
Sequence to sequence (VGG16) + Flow (AlexNet) - 0.298 - -
Our system (VGG16) - non-attention 0.393 0.308 0.580 0.666
Our system (VGG16) - semantic attention 0.386 0.313 0.589 0.665

Table 1: Scores of video description generation results on the MSVD dataset.

≈40 captions/clip. We split the dataset into
train/validation/test sets following Venugopalan et
al. (2015b).

We downsample the video clips by selecting ev-
ery 8th frame and resize them to 224x224. Then,
we extract features for each frame using a pre-
trained image classification model provided in
Caffe Model Zoo (Jia et al., 2014). In this work, we
use the 4096-dimensional fc7 layer of the VGG16
model (Simonyan and Zisserman, 2014) as frame
features and embed them into 512-dimensional
embeddings.

For text input, we represent words with
GloVe pre-trained word embeddings, proposed
by Pennington et al. (2014). We map the
300-dimensional GloVe word vectors into 1000-
dimensional vectors. The visual concepts are
treated in the same way as text input.

3.2 Experiment setting

In order to enable batch training, we constrain the
number of encoding and decoding time steps to
be 60 and 20, respectively. We use the Adam op-
timizer with the learning rate of 0.0001 and the
mini-batch size of 200. The LSTM hidden layer
size is set to 1,000. To avoid overfitting, we ap-
ply the dropout strategy with the ratio of 0.3 at the
frame input layer. All the parameters are jointly
learned at training time.

3.3 Visual concept detection

We use the pre-trained model provided by Fang
et al. (2015) to detect visual concepts from ev-
ery frame of the downsampled videos. The vi-
sual concepts includes actions, objects, attributes
of objects, and also locations.

The detected visual concepts of all frames of a
video are combined into one collection. For one
video, we select 20 concepts from the collection
and treat them equally, ignoring their scores pro-
vided by the concept detector, as shown in the
boxes in Figure 2.

3.4 Evaluation

We performed a quantitative analysis of re-
sults based on four evaluation metrics, including
BLEU, METEOR, CIDEr, and ROUGE-L.

We implemented our system using Chainer
(Tokui et al., 2015) and used the caption evalu-
ation package provided by the Microsoft COCO
Image Captioning Challenge (Chen et al., 2015).

3.5 Experimental results

Table 1 shows the experimental results of our
proposed system. METEOR and CIDEr scores
slightly increased while BLEU and ROUGE-L
scores dropped when using semantic attention.

Even though the semantic attention mechanism
cannot clearly improve the scores of the test set,
we can see some promising results in Figure 2.
The relevant visual concepts were focused and the
alignment weights changed properly when each
word of the sentences were being generated.

In the bottom-right example, though the
model mistakenly focused on the visual concept
‘woman’, the mis-mentioned object (bicycle) in
non-attention model can be correctly identified
(bike) by the model with semantic attention.

We can see that many irrelevant visual concepts
were detected. This is because we used the vi-
sual concept detector that was trained on other
datasets, so it could not perform well in MSVD
video frames. We believe that if we re-train the
concept detector with our dataset, we can achieve
better results.

4 Conclusion

In this paper, we have proposed an LSTM-based
sequence-to-sequence model with semantic atten-
tion for video description generation. The scores
do not have obvious improvement; however, the
model is able to learn to focus on external fine-
grained information of videos and a have better
quality of video descriptions.
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Figure 2: Example of generated descriptions and alignment weights of visual concepts when each word
of the sentences was generated. The values are clipped at 0.1 for easier reading.
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