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1 Introduction 

Japanese Haiku is a cultural heritage with a history of 
more than six hundred years. It is a traditional form of 
Japanese poetry that expresses facts, seasons, emotions, 
and reasoning in a compact way. One Haiku poem con-
sists of 17 音 (on, also known as morae though often 
loosely translated as “syllables”) which are separated 
into 3 columns and is frequently written in a right-to-
left way (Figure 6). The beginning and ending columns 
of a Haiku have 5 syllables (i.e., Hiragana ons) and the 
middle line has 7 syllables. The ending words of each 
columns are not limited to be rhymed.  
    For example, the following famous Haiku: 

古池
ふるいけ

や / an ancient pond, 

  蛙
かわず

飛
と

びこむ / a frog leaps in, 

    水
みず

の音
おと

 / the splash of the water,  
written by the most famous poet of the Edo period of 
Japan, Matsuo Basho, at the year of 1686, depicts an 
excellent print with the figures of pond, frog and the 
wave of the water. The season word in this Haiku is 
frog that implicitly corresponds to the spring season. 
The Haiku expresses a frog jumping into a pond which 
interrupts the silence of the environment. Yet, after that, 
the environment recovers to an indifferent silence. 
From this point of view, there is also a Buddhism “si-
lence” in which the ancient pond is the poet’s heart and 
the frog is something outside that tries to influence the 
poet’s impassive emotions. Even the interruption hap-
pens in a short time, yet the “wave” transfers in a rela-
tively long time before recovering the “silence”.  
    Considering from neural language model (NLM) 
point of view, nouns such as pond, frog and water are 
semantically close with each other. Also, there is a 
predicate argument relation between the noun of frog 
and the verb of leap in. Motivated by these and the in-
teresting researches for generating Chinese poems us-
ing deep neural networks (Zhang and Lapata 2014), we 
investigate the generating of Haiku using the following 
deep neural networks: 
(1) Minimal vanilla recurrent neural networks (RNN) 

for learning character level neural language mod-
els, 100 python lines1 by Andrej Karpathy2;  

                                                
1 https://gist.github.com/karpathy/d4dee566867f8291f086 and 
http://karpathy.github.io/2015/05/21/rnn-effectiveness/   
2 http://cs.stanford.edu/people/karpathy/   
3 https://github.com/karpathy/char-rnn   
4 http://torch.ch/   

(2) Multi-layer RNN3 using cells/units of long short 
term memory (LSTM) (Hochreiter and Schmidhu-
ber 1997) and gated recurrent unit (GRU) (Cho et 
al. 2014) for character-level language models in 
Torch4. A relatively detailed description can be 
found in (Karpathy et al. 2016)5. 

(3) Character level recurrent convolutional neural net-
works (RCNN) 6 proposed by Kim et al. (2016); 

(4) Sequence generative adversarial networks (Se-
qGAN)7 proposed by Yu et al. (2017) following 
the GAN idea of Goodfellow et al. (2014).  

The target of our investigation is to share the tradi-
tional culture of Haiku among young people during 
his/her communicating with emotional chatbots, such 

as りんな/ Rinna8 (Wu et al. 2016), a chatbot designed 

to be a senior high-school girl and owns more than 5 
million friends. The motivation is that, in these years, 
Haiku is struggling of losing focus among young peo-
ple. For one reason is that there are not enough teachers 
who are deep familiar with Haiku and for another rea-
son is that the learning process without using the 
knowledge in ordinary life is a bit boring and easy to 
be forgotten. We thus consider training Rinna to be a 
Haiku expert so that she can share interesting Haikus 
to the million-level users through a conversational way.  

We describe these four neural networks in Section 2. 
Then, we show how our training data is collected from 
the Web and from the end users of Rinna in Section 3. 
Finally, we illustrate the experiments and application 
examples in Section 4 and conclude in Section 5.  

2 Neural Networks 

The minimal vanilla RNN includes three layers of in-
put, recurrent and output, as depicted in Figure 1.  
 

 
Figure 1. Minimal vanilla RNN. 

5 refer to http://karpathy.github.io/2015/05/21/rnn-effectiveness/  
6 https://github.com/yoonkim/lstm-char-cnn   
7 https://github.com/LantaoYu/SeqGAN   
8 http://www.rinna.jp/   

Output y = WhyhT + by 
            pi = eyi/sumj{eyj} 

Recurrent:  
ht+1 = tanh(Whhht + Wxhxt + bh) 

Input X = [x1, x2, …, xn] 
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In Figure 1, each rectangle is a vector and arrows rep-
resent functions such as matrix-vector multiplication. 
The input layer is a group of vectors and each vector xt 
is a word2vec (Mikolov et al. 2013) style embedding 
of the input character. One vector ht+1 in the recurrent 
layer is computed by first linear combining ht and xt 
and then attaching an elementwise non-linear transfor-
mation function, such as tanh or sigmoid. We set T to 
be the number of steps to unroll the recurrent layer and 
hT is the final vector to be used by the output layer. The 
output layer is to determine the probabilities of charac-
ters following current input, for example, the probabil-

ity of “の” (‘s) following “水” (water). For one pi 
where i ranges from 1 to the character vocabulary size 
|V|, it is computed by first compute y which is a linear 
function of hT and then we use softmax function to pro-
ject y into a probability space to ensure p = [p1, p2, …, 
p|V|]T follows the definition of probabilities. For error 
back-propagation, we use cross-entropy loss which 
corresponds to a minus log function of p.  
    This architecture is simple and easy to be imple-
mented. However, gradient vanishes as T grows bigger 
and bigger. That is, gradients in (0, 1) from hT back to 
h1 will gradually close to zero making the SGD-style 
updating of parameters infeasible. To alleviate this 
problem, other types of functions for expressing ht+1 
using ht and xt have been proposed, in which LSTM 
and GRU are most wildly used.  
    For example, LSTM (Figure 2) addresses (1) the 
learning of long distance dependencies and (2) the gra-
dient vanishing problem by augmenting the traditional 
RNN with a memory cell vector ct ∈ℝn at each time 
step. Formally, one step of an LSTM takes as input xt, 
ht-1, ct-1 and produces ht, ct via the following interme-
diate calculations: 

it = σ(Wixt + Uiht-1 + bi), 
ft = σ(Wfxt + Ufht-1 + bf), 
ot = σ(Woxt + Uoht-1 + bo), 
gt = tanh(Wgxt + Ught-1 + bg), 
ct = ft ⊗ct-1 + it⊗gt, 
ht = ot ⊗tanh(ct). 

Here σ(.) and tanh(.) are the element-wise sigmoid and 
hyperbolic tangent functions, ⊗ is the element-wise 
multiplication operator, and it, ft, ot respectively denote 
input, forget, and output gates. When t = 1, h0 and c0 
are initialized to be zero vectors. Parameters to be 
trained of the LSTM layer are matrices Wj, Uj, and the 
bias vector bj for j∈{i, f, o, g}.   
 

 
Figure 2. A simple LSTM block with input, output, 

and forget gates. 

By leveraging these three gates, LSTM achieved sig-
nificant improvements in NLP applications and speech 
recognition as well. The recently proposed GRU is iso-
morphic with LSTM except that two gates, update and 
reset, are employed in one block, making the number 
of parameters to be tuned to be smaller yet with com-
parable results. More detailed description about GRU 
can be find in (Cho et al. 2014) and the comparison 
with LSTM can be find in (Jozefowicz et al. 2015). 
    We can build character level NLMs using the vanilla 
RNN layers and the LSTM/GRU layers. One further 
requirement is that, can we capture latent semantic de-
pendencies among high level components other than 
characters. For example, for the example Haiku in Sec-
tion 1, there is a latent constraint among the three lines. 

That is, “水の音” is a consequent event of “古池や” 

and “蛙飛びこむ”. Both the pond and the frog’s jump-
ing in are necessary to yield the voice of the water. 
Thus, automatically detect the groups of “events” and 
then learn the sequential dependencies among them 
will be intuitively helpful for the Haiku generating task. 
This motivated our usage of the character-level RCNN 
model as depicted in Figure 3.  
    The character-level RCNN language models (Kim et 
al., 2016) were verified to be able to encode, from char-
acters only, both semantic and orthographic infor-
mation. First, each character in sentence are converted 
into dense vector spaces alike bag of words NLMs. 
Next, convolution neural network (CNN) initially de-
scribed in (LeCun et al. 1989) converts them with var-
ious kernel size (e.g., 3, 5, 7). Then the vectors are 
transferred to the RNN layer in which LSTM units are 
employed. Finally, aiming at predicting the next char-
acter, the states of RNN are regarded as feature vectors 
and are passed to the softmax layer for computing the 
probabilities of the characters in the vocabulary.  

 
Figure 3. Architecture of the character-level RCNN 

with three major layers drawn. 

古 池 や \t 蛙 飛 び こ む \t 水 の 音 </s> 

Character embedding 

Convo-
lutional 
layer 

Recurrent layer 

⋯ ⋯ 
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Figure 4. Illustration of SeqGAN. (Yu et al. 2017) 

   
    The representation of a word w after the CNN layer 
is yw = [y1

w, …, yh
w] in which each filter function takes 

the max-over-time pooling result, 
yw = maxifw[i] 

as the feature corresponding to one filter H when ap-
plied to w. The idea behand is to capture the most “im-
portant” feature fw (corresponds to a character n-gram).  
    The final neural network we investigate is GAN 
which can estimate generative models via an adversar-
ial process. The process simultaneously train two mod-
els: a generative model G that learns the data distribu-
tion and a discriminative model D that estimates the 
probability that a sample came from the training data 
rather than G. The training goal function for G is to 
maximize the probability of D making a mistake. Alike 
(deep) reinforcement learning (RL), the framework 
corresponds to a minimax two-player game.  
    As illustrated in Figure 4, SeqGAN was proposed by 
Yu et al. (2017) for textual “sequence” generation.  
Modeling the data generator as a stochastic policy in 
RL, SeqGAN bypasses the generator differentiation 
problem by directly performing gradient policy update. 
In the left-hand-side of Figure 4, D is trained by using 
two types of data, the real-world data (a.k.a. True data) 
and the generated data from G. In the right-hand-side, 
G is trained by policy gradient where the final reward 
signal is provided by D. The signal is further passed 
back to the intermediate action value via Monte Carlo 
(MC) search.  

3 Training Data Collection 

We collect Haiku data from two channels, one is from 
several Haiku websites and the other is from our chat-
bot’s (i.e., Rinna’s) query log as shown in Figure 5. We 
collected 36,792 Haikus from the web in which we  

 # haiku # avglen # char  # oov 

train u 90,000 16.7 2,934  

valid u 5,000 16.8 1,353 29 

test u 5,000 16.7 1,347 30 

train w 30,792 13.2 4,110  

valid w 3,000 13.2 2,416 53 

test w 3,000 13.2 2,435 55 
Table 1. Statistical information of two types of training, 
validation, and testing data, where u=user, w=web, 
avglen = average character number per Haiku, # char = 
the vocabulary size of characters. 
   

    
Figure 5. Haiku candidate collection based on chat-

bot’s query log. 
 

     
Figure 6. Example Haikus for “ここで一句”. 

 
randomly select 3,000 as validation set and another 
3,000 as the test set for comparison of the four types of 
NLMs.  
    Note that we do not limit the Haiku candidate from 
end users to include season words. The Haiku candi-
date can be rather spoken language style, such as the 
following example: 

こんにちは / Good Morning,       

  証拠
しょうこ

がほしい / I need evidence (to say),    

    愛
あい

してる / I love you.  

Even with quite simple words, this “Haiku” is rather 
interesting that implicitly express a rather whole-night 
seeking of love-related evidences for confirming the 
relationship between the specific user and Rinna. This 
user Haiku database includes 40,432,211 Haikus using 
1-year Rinna query log. This data is rather too large to 
be used directly for NLM training. We pick a subset of 
it with 100,000 Haikus in which we randomly selected 
5,000 as the validation set and another 5,000 as the test 
set. For utilizing the remaining large-scale data, we 
specially designed a Haiku feature for Rinna’s users. 

That is, whenever the user send a query alike “ここで

一句” / one Haiku here, one randomly selected (from  

Chatbot’s text query log data <user ID, query, 
timestamp> 

Offensive word filtering, word segmentation, and 
Kanji-Kana pronunciation predication  

 

Filter out queries with 5 or 7 Hiraganas for each User 

 For each user, use RNNLM based combination to 
form 5+7+5 style Haikus 

Create User Haiku Database: <user ID, Haiku list> 
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 Haiku web 

epoch char-small char-large 

5 497.7 749.2 

10 419.6 443.9 

15 420.0 222.8 

20 420.1 223.0 
Table 2. Perplexities for the char RCNN model. 

 
the database or from the generation model) Haiku for 
that specific user will be sent from Rinna.  
    The detailed statistical information of these two 
types of training data is shown in Table 1. Even with 
less number of Haikus, the web Haiku uses 1,000 more 
(unique) characters (especially Japanese Kanjis) than 
the user Haiku. Also, note that the average length of 
web Haiku (13.2) is 3.5 characters shorter than user 
Haiku (16.7) indicating that user Haiku uses more Hi-
raganas than Kanji where one Kanji can be pronounced 
by more than one Hiraganas. 

4 Experiments 

For training the four NLMs, we keep the usage of the 
default configurations as suggested by the authors ex-
cept that we update the input/output related codes to 
support Japanese characters in UTF8 encoding and we 
use “\t” to separate columns and “</s>” to denote the 
end of one Haiku (also refer to Figure 3). We also use 
the validation set to tune the hyperparameters (such as 
size of hidden layers, number of hidden layers, input 
embedding vector size). We report the test set’s per-
plexities of the optimized models.  
    Specially, for the char RCNN model, we compare 
the perplexities of configures that the RNN size takes 
the value of 300 (char-small) and 650 (char-large); the 
embedding size of 15 (char-small) and 650 (char-large). 
The changes of perplexities are listed in Table 2. 
“Epoch” denotes the T of the recurrent layer. Since the 
average character number of each Haiku is around 13 
in Haiku web data, the perplexities change slightly 
when epoch jumps from 15 to 20. Also, there is a big 
gap between char-small and char-large, with a nearly 
half perplexity reducing from 420.0 down to 222.8. 
Since the results range largely even for one model with 
different hyperparameter configurations, we are won-
dering if it is generally fair to directly compare all the 
four networks each need detailed tuning. We continue 
to report the perplexities based on that the training set 
 

models Haiku web Haiku user 

RNN 246.1 169.1 

RNN-LSTM 219.5 162.5 

RCNN 222.8 155.0 

SeqGAN 220.9 160.2 
Table 3. Perplexities for the four NLMs. 

and test set are the similar ensuring their comparable in 
a sense, as listed in Table 3. The RNN-LSTM performs 
slightly better than the other three networks for the 
Haiku web set and it’s RCNN that performs the best in 
Haiku user data.    

5 Conclusion 

We have described our investigation of four types of 
character-level NLMs, vanilla RNN, RNN with LSTM 
blocks, RCNN, and SeqGAN, for Japanese Haiku gen-
eration. We trained these models using the Haikus col-
lected from the web and from query logs of Rinna. We 
launched our Haiku feature in Rinna and obtained more 
than 50 million accesses in a couple of months. 
Through this way, we hope to broadcast traditional 
Haiku culture among the young users of Rinna. It will 
be interesting to include images for Haiku generation 
such as explain an image by an automatically generated 
Haiku or generate an image from a given Haiku. We 
leave these as our future work.  
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