
言語処理学会 第23回年次大会 発表論文集 (2017年3月)

Are Deep Learning Methods Better for Twitter

Sentiment Analysis?

Yujie Lu Kotaro Sakamoto Hideyuki Shibuki Tatsunori Mori
Graduate School of Environment and Information Sciences, Yokohama National University

{luyujie, sakamoto, shib, mori}@forest.eis.ynu.ac.jp

1 Introduction

Many applications based on sentiment analysis on
social media, such as Twitter, have been developed
by researchers. Recently, during the Unites States
presidential election of 2016, politicians, including
president-elect Donald J. Trump, have been using
Twitter as a mean of communicating with the public,
drawing tremendous attention to Twitter1.

It is known that sentiment analysis on tweets still
fall behind it on traditional texts, such as movie re-
views and product reviews, while it has achieved tan-
gible progress since the popularity of deep learning
and the availability of large training datasets (dis-
tant supervised by emoticons and hashtags). How-
ever, previous sentiment analysis studies on tweets
usually carried out in an experimental setting, i.e.,
their training/validation/test datasets only have two
types of global polarities (i.e., positive and negative).
What makes it worse, the judgments made by sys-
tems are not consciously linked to the designated
evaluation objects, i.e., they just mathematically fit
features extracted from tweets to their true polarities
as simple document classification does.

These experimental settings are basically unpracti-
cal for real-world systems. First, the tweets that are
passed to systems in a production environment un-
avoidably contain three types of polarities (i.e., posi-
tive, negative and neutral), since we cannot pick out
positive and negative tweets from a large collection
of tweets by any kind of automated tweet filtering
beforehand.

Second, the global polarity of a tweet is defined
as author’s attitude to a specific evaluation object
(topic) in it. We cannot decide the global polarity of
a tweet without given an evaluation object, especially
for tweets containing multiple topics and complex
contexts. For example, in the following tweet, there
are two topics (i.e., #windows8 and #skype). This
tweet could be a positive tweet (regarding Windows
8) or a neutral tweet (regarding Skype).

1Please refer to the article from the New York Times: For
Election Day Influence, Twitter Ruled Social Media

So now on #windows8, any time #skype plays a sound
to my speakers, it breaks all speaker sound for every-
thing, even across reboots. Lovely.

From the above, we can see that Twitter senti-
ment analysis in a real-world setting is more difficult
than it is in an experimental setting2. [3] constructed
an unbiasedly-selected and carefully-annotated mul-
tilingual tweet corpus (called as the MDSU corpus
below) for sentiment analysis3. The MDSU corpus
is not only close to the real-world setting (the global
polarity of each tweet is one of the three types and
topic-relevant), but also is full of complex contexts.

In this paper, we will use its English dataset to
test three different models (i.e., SVM4, CNN5, and
RNN6) to see how well they perform in the a real-
world setting and whether can the deep learning
methods always outperform the SVM baselines.

2 Related Work

In this section, we briefly summarize the previous
studies on Twitter sentiment analysis.

2.1 Machine Learning Methods

As an early attempt, [1] annotated a noisy-labeled
tweet dataset by emoticons, carried out experi-
ments with three machine learning methods, in-
cluding SVM, Maximum Entropy, and Naive Bayes,
fed with binary unigram/ bigram features, same as
[4] conducted on movie reviews, and showed that
the SVM model achieved the best accuracy. Later
on, many researchers tried various machine learning
methods fed with their own specially-designed fea-
tures, such as n-gram, POS, synonym, topic, word

2In this paper, the experimental setting regards Twitter
sentiment analysis as a binary classification task without spec-
ified evaluation objects, while the real-world setting regards it
as a 3-class classification task with specified evaluation objects

3Although the MDSU corpus contains rich annotations, we
mainly use it as a testbed in the paper.

4SVM stands for Support Vector Machine.
5CNN stands for Convolutional Neural Network.
6RNN stands for Recurrent Neural Network.

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 787 ―

polarity, emoticon, context, discourse relation, and
even, author gender. The SemEval-2014 Task 9 re-
port also pointed out that most participants resorted
to machine learning methods with various features,
who depended heavily on sentiment lexicons, attain-
ing approximately 70% accuracy at best.

2.2 Deep Learning Methods

Due to the prevalence of deep learning in these years,
many different network structures have been put
forth for opinion mining. [2, 6] introduced their
attempts of using CNN and recursive neural net-
works on sentence-level sentiment classification re-
spectively, achieving rather inspiring results. Later
on, researchers started to apply them to Twitter
sentiment analysis. [5] explored the deep convolu-
tional neural networks, and achieved accuracies that
could rank in the first two positions in Semeval-2015
Task 10. [7] proposed a Long Short Term Mem-
ory (LSTM) recurrent network, and outperformed
several feature-engineering approaches. They also
reported that their models are able to capture the
special functions of words. Besides these studies, a
couple of other deep network structures have been
proposed.

Although our models to be used for comparison
do not have significant differences from the existing
methods, it is still meaningful to observe their adapt-
ability and performance in the real-world setting.

3 Models

3.1 Support Vector Machine

SVM has proved to be an efficient classification
model for document classification. The essence of
SVM is to find a hyperplane represented by its nor-
mal vector w which maximizes the margin between
two classes. This search then becomes a constrained
optimization problem (specifically speaking, a solved
convex quadratic programming problem) and the so-
lution can be written as:

w =
n∑

i=1

αiyixi, αi ≥ 0 (1)

where xi are support vectors lying on the class
boundaries, αi are coefficients of support vectors and
yi are true values, each of which ∈ {1,−1}.
To solve multiclass classification task, one-vs-the-

rest or one-vs-one strategy can be adopted. By de-
fault, the one-vs-one strategy is used. Further, for
linearly inseparable problems, kernel trick can be
used.

The machine learning methods based on SVM with
n-gram features proposed by Pang et al. (2002) and
Go et al. (2009) are frequently used as baselines in

Figure 1: Tweet Matrix with Zero Padding

many previous studies. Similar to their settings, we
use the default SVM model with a linear kernel and
C = 1. Besides, the binarized unigram/bigram term
frequencies are used as our features. The models
are trained with LibSVM (Chang and Lin, 2011) via
Python scikit-learn library.

3.2 Convolutional Neutral Network

One of the advantages of CNNs is that they have
many fewer parameters than fully connected net-
works with the same number of hidden units, which
makes them much easier to be trained. Our CNN
architecture is very close to the architecture of [2].

Let xi be the k-dimensional word vector corre-
sponding to the i-th word in a tweet; thus, a tweet
having n words is represented as:

x1:n = x1 ⊕ x2 ⊕ x3 ⊕ ...⊕ xn (2)

where is ⊕ the concatenation operator. To unify the
matrix representation of tweets in different length,
the maximum length of all tweets in the dataset
is used as the fixed length for tweet matrices. For
shorter tweets, zero vector was padded at the back
of a tweet matrix (see Figure 1).

Next, we carried out convolution operation across
each tweet matrix to transform it to a scalar ci. This
procedure is formulated as follow.

ci = f(w · xi:i+h−1 + b) (3)

c = [c1, c2, ..., cn−h+1] (4)

where w denotes a filter map, h is the window size
of a filter, f is a non-linear activation function and
b is a bias term. By doing so, reginal word vectors
xi:i+h−1 in a tweet matrix is convoluted to ci.

Then, we conduct subsampling operation. Here,
we use the following max-pooling as our subsampling
method.

cmax = max{c} (5)

From Eqs. (3)–(5), a filter generates one cmax from a
tweet matrix. Practically, the convolution and sub-
sampling operations are usually performed in pair.

The number of filter maps of our CNN model is
100, and the possible window sizes are {3, 4, 5}, so
there are 300 different filters in total in our model.

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 788 ―

Figure 2: Illustraion of Our RNN Model

The corresponding 300 cmax form the penultimate
layer, and are then passed to a fully connected soft-
max layer to predict the global polarity of a tweet.
Further, we employed Dropout as our regular-

ization on the penultimate layer. Dropout was
proved to be an effective way to prevent co-
adaptation of hidden units by randomly setting a
portion of the hidden units to zeroes during feedfor-
ward/backpropagation.

3.3 Recurrent Neutral Network

RNNs have gained tremendous attention in the NLP
field, and they have been employed to handle many
tasks, including machine translation. One of the
characteristics of RNNs is that they can use their
internal memory to process sequences of inputs in
arbitrary length.

A RNN consists of a hidden state h and an op-
tional output y which operates on a variable-length
sequence x = (x1, ..., xT). At each time step t, the
hidden state h⟨t⟩ of the RNN is updated by

h⟨t⟩ = f(h⟨t−1⟩, xt) (6)

where f is a non-linear activation function. Unlike
other neutral networks, researchers have designed
quite complex activation functions for RNNs, such
as LSTM and GRU (Gated Recurrent Unit) cells.

After the last word vector being inputed to the
model, the polarity distribution of the global polarity
of a tweet can be given by the softmax layer using
h⟨T ⟩, as follows.

p(yj = 1) =
exp(wjh⟨T ⟩)∑K
j′ exp(wj′h⟨T ⟩)

(7)

where K is the number of classes, j = 0, ...,K − 1,
and wj are the rows of the weight matrix W of the
softmax layer.
By reusing the hidden units in the previous layer,

RNNs allow past information sequentially encoded
inside the networks. Such structures make it possible
to compress a variable-length input into a fix-length
vector h⟨T ⟩. Figure 2 illustrates our RNN model.
Our RNN architecture is basically as same as the El-
man Network described in [7]. The size of the hidden
layer is 100 in this paper.

4 Experiment

4.1 Experiment Setup

The MDSU corpus involves 3 languages (i.e., En-
glish, Japanese and Chinese) and 4 international
topics (i.e., iPhone 6, Windows 8, Vladimir Putin,
and Scottish Independence), consisting of 12 col-
lections. Totally, the corpus has 5422 tweets, with
each collection containing approximately 450 tweets.
The English and Japanese tweets are collected from
Twitter7, and the Chinese tweets are collected from
Weibo8, a Chinese version of Twitter. During the
tweet selection, we filtered out those apparent non-
emotional tweets and preferred to choose tweets with
rich language phenomenon.

As said in the introduction section, we only use
the English dataset of the MDSU corpus, whose po-
larity distribution is shown in Table 1. The average
number of words of the tweets in the dataset is 23,
with a minimum of 10 and a maximum of 34 (i.e.,
the length of tweet matrices for the CNN model).
The instances of the dataset is given in the [<topic>,
<tweet text>, <polarity>] format, such as [“Windows
8”, the example tweet in Section 1, “positive”].

Table 1: Polarity Distribution of the English Dataset
Positive # Negative # Neutral #

503 774 526

In this paper, the word embedding we used for our
deep learning modes is word2vec9 vectors trained
on Google News, who have dimensionality of 300.
Words not present in word2vec vectors are initialized
randomly (using a uniform distribution having ap-
proximately the same variance with the pre-trained
vectors). Our pre-trained vectors are treated as fixed
inputs, and are not fine-tuned during learning.

There are two types of classification tasks in this
paper. One is a 3-class classification (all 1803 in-
stances in [<topic>, <tweet text>, <polarity>] for-
mat), and the other is a binary classification (1277
non-neutral instances in [<tweet text>, <polarity>]
format). For all the models, we use accuracy as our
metric, and 10-fold cross validation for model evalu-
ation. For each fold, CNN models run 25 epochs and
RNN models run 100 epochs. To simplify the com-
parison, we only used word information as inputs for
all three models (binarized unigram/bigram frequen-
cies for SVM models, and word vectors for CNN and
RNN models).

7http://www.twitter.com
8http://weibo.com
9https://github.com/mmihaltz/word2vec-GoogleNews-

vectors

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 789 ―

Table 2: Classification Accuracy of Each Model
Type Model Accuracy

Binary
Classification

SVM (unigram) 0.746
SVM (bigram) 0.714
SVM (unigram+bigram) 0.784
CNN (max-pooling) 0.676
RNN (Elman) 0.587

3-Class
Classification

SVM (unigram) 0.549
SVM (bigram) 0.500
SVM (unigram+bigram) 0.588
CNN (max-pooling) 0.504
RNN (Elman) 0.417

4.2 Results and Discussion

Table 2 shows the accuracy of each model for both
tasks. From Table 2, we find that the SVM model
using both unigram and bigram features obtains the
best results for both binary and 3-class classification
in all five models. For binary classification, it attains
the 78.4% accuracy, and for 3-class classification, it
attains 58.8% accuracy. We also tested the SVM
models using longer n-grams (n ≥ 3), and it showed
no improvement.

The two deep learning models underperform most
of the SVM models. For binary and 3-class classifi-
cation, CNN model attains 67.6% and 50.4% (only
better than the SVM model using bigram) accuracies
respectively, and the RNN model only gains 58.7%
and 41.7% accuracies respectively. We speculate that
these mediocre results are mainly owing to the small
size of our training data relative to model complexity
of the two models (i.e., the parameter number is on
the order of tens of thousands for the RNN model,
and hundreds of thousands for the CNN model). We
observed the performance of both models on train-
ing data, and found that the CNN model obtain 99%
accuracy after 15 epochs, and the RNN model does
so after approximately 130 epochs. This means both
the CNN and RNN models had very bad generaliza-
tion (i.e., overfitting) ability and lacked robustness.

Further, the SVM models with unigram/bigram
feature were also experimented by Go and Pang on
their datasets (i.e., noisy-labelled tweets and movie
reviews). We can see that the performance of the
same model on the MDSU corpus (i.e., 74.6%/71.4%)
deceased to a certain extent comparing with Go and
Pang (i.e., 82.2%/81.6% and 82.9%/77.1%, respec-
tively). The decrease may be caused by the complex-
ity of our dataset. Although researchers reported
70%∼80% accuracy for Twitter sentiment analysis
using their methods, from Table 2, we can see that
the accuracies are much lower in the real-world set-
ting (i.e., 3-class classification).

5 Conclusion and Future Work

By experimenting with different models on our
MSDU corpus, we have three main conclusions.
First, deep learning methods are not necessarily
better than traditional machine learning methods.
Their performance not only depends on the appropri-
ateness of the network structure, but also on the size
of the training dataset. Second, the classification ac-
curacies in the real-world setting is much lower than
them in the experimental setting, which means the
current reported performance of Twitter sentiment
analysis in previous studies may be over-claimed.
Third, we reconfirmed that SVM models have rather
good fitness to NLP tasks, especially when the size
of dataset is limited. In the future, we will focus on
the understanding of the special contexts in tweets,
and try to put forth tree-based methods to model
the intrinsic logic of sentiment contained in tweets.

References

[1] Alec Go, Richa Bhayani, and Lei Huang. Twit-
ter sentiment classification using distant supervi-
sion. CS224N Project Report (Stanford), pages
1–6, 2009.

[2] Yoon Kim. Convolutional neural networks for
sentence classification. Proceedings of EMNLP
2014, pages 1746–1751, 2014.

[3] Yujie Lu, Kotaro Sakamoto, Hideyuki Shibuki,
and Tatsunori Mori. Construction of a multilin-
gual annotated corpus for deep sentiment under-
standing in social media. IPSJ SIG Technical
Reports, 2015-NL-222(1):1–12, 2015.

[4] Bo Pang, Lillian Lee, and Shivakumar
Vaithyanathan. Thumbs up? sentiment
classification using machine learning techniques.
Proceedings of EMNLP 2002, pages 79–86, 2002.

[5] Aliaksei Severyn and Alessandro Moschitti.
Twitter sentiment analysis with deep convolu-
tional neural networks. Proceedings of SIGIR’15,
pages 959–962, 2015.

[6] Richard Socher, Alex Perelygin, Jean Y. Wu,
Jason Chuang, Christopher D. Manning, An-
drew Y. Ng, and Christopher Potts. Recursive
deep models for semantic compositionality over
a sentiment treebank. Proceedings of EMNLP
2013, pages 1631–1642, 2013.

[7] Xin Wang, Yuanchao Liu, Chengjie Sun, Baoxun
Wang, and Xiaolong Wang. Predicting polar-
ities of tweets by composing word embeddings
with long short-term memory. Proceedings of
ACL/IJCNLP 2015, pages 1343–353, 2015.

Copyright(C) 2017 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　― 790 ―

