
 Automatic Flick Keyboard Error Correction Based on
GMM-LR-LM

Gang Qiao, Yihua Huang, Yabo Li, Jianmin Wu, Tianhuang Su

EBG, Baidu Inc, China, 518052

{qiaogang01, huangyihua, liyabo01, wujianmin01, sutianhuang}@baidu.com

1.Introduction
With the rapid development of mobile Internet,
Social apps is becoming more and more
important. As an indispensable app of
intelligent equipment, the input method is very
important and because of the limited size of
smartphones, the auto-correction function has
been paid more and more attention by users.

Currently the most popular Japanese input
method in touch screen smartphone is flick
keyboard with kana-kanji convert. As showed in
Figure 1, kanas and functional keys are assigned
to 12 keys. Each key expresses 3~5 kanas that
share generally the same consonant
corresponding to one line in the gojūon order. A
user is supposed to enter a kana with vowel “a”
by tapping the key face, and rest kanas of the
same gojūon line by swiping to certain direction
for sub-keys. Although flick keyboard has
bigger key face size than QWERTY keyboard,
the combination of tapping and swiping makes
errors happen more frequently. The probability
of kana error is near to 10% per word according
to volunteers’ feedbacks，most of which are
substitution errors. The substitution could be
any combination of neighboring keys and are
too hard to be enumerated by hand-written
rules.

	
Figure 1: The most popular Japanese Input Method

Auto-correction [1] has been proposed
very early, with the purpose to find the users’
errors and correct them. Edit distance [2] is still
widely used today. This algorithm is simple and
easy to understand. For example, if you type
“あ” but truly to have “か”, the substitution will
analyze the probability 𝑝(か|あ) which can be
trained from corpus. But the performance is not
very good because of few features. [3] adopted
machine learning in spelling correction, but it
only applies to search engines.

Fortunately, we found that most of the
substitution errors fall into two categories. One
is by tapping on or swiping to a wrong key, and
the other is by taking a tapping operation as a
swiping one or vice versa. Therefore, the
auto-correction problem consists of two parts.
Firstly, given a sequence of touch operations
that may contain substitution error, the most
likely button sequence should be identified.
Secondly, a series of kana sequences with
probability should be generated based on the
button sequence. To address this problem, we
exploit the characteristics of touch screen
interaction and propose a probabilistic model
for flick keyboard auto-correction.

2. Methods
The GMM-LR-LM model is proposed to solve
this problem. GMM (Gaussian Mixture Model)
is used to map the input touch sequence to the
button sequence set. LR (Logistic Regression)
is used to map the button sequence to the kana
sequence and the LM (Language Model such as
N-gram) is used to adjust the final probability of
kana sequence.

― 947 ―

言語処理学会 第24回年次大会 発表論文集 (2018年3月)

Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

	
Figure 2: The framework of the proposed method

The paper framework is showed in Figure
2, which can be divided into three parts:
Preprocessing, Correction Model and LM. In
the first part, the raw touch sequence data is
extracted as a feature vector and normalized to a
standard one. The correction work in done in
the second part and the third part deals with
LM.

2.1. Preprocessing

2.1.1 Feature representation
In order to predict kana exactly, features are
collected such as touch point coordinate (𝑥, 𝑦)
and touch duration. Different feature
combinations are used in different models.
Generally, a touch point can be represented as,

𝑣 = 𝑥, 𝑦, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 1 	
The representation of a flick track only

consider a start point v5 and an end point v6,
which is shown as,

𝑒 = 	𝑣8, 𝑣9 2 	

2.1.2 Normalization
As we know, smartphone screen resolution
varies and the inputs scale differently. But they
can be normalized to a standard one according
to the keyboard width and height.

𝑥, 𝑦 =
𝑥;9<=
𝑤𝑖𝑑𝑡ℎ ,

𝑦;9<=
ℎ𝑒𝑖𝑔ℎ𝑡 3 	

where (𝑥;9<=, 𝑦;9<=)	 is the real data
coordinate; (width, height) are the keyboard
width and keyboard height.

Different features have different units. In
order to make the model training more efficient,
continuous features are normalized by the

formula below, where 𝑢, 𝜎 are the mean and
standard deviation of feature 𝑓.

𝑓K =
𝑓 − 𝑢
𝜎 4 	

2.2 Correction Model
In our correction model GMM-LR, for a given
touch sequences 𝐸 = 𝑒O𝑒P, … , 𝑒R, the output is
to generate a number of kana sequences
𝐶T = 𝑐O𝑐P, … , 𝑐R with probability 𝑝(𝐶V|𝐸). We
assume that each type activity is independent,
then we get,

𝑝WRR=; 𝐶V 𝐸 ≈ 𝑝WRR=; 𝑐V 𝑒V 5 	

𝑝WRR=; 𝑐V 𝑒V = 𝑝WRR 𝑏V|𝑒V 𝑝=; 𝑐V 𝑒V, 𝑏V 6 	
where, p]^^ bT|eT is the probability of

button bT and p`a cT eT, bT is the conditional
probability of kana cT based on bT. Both will
be discussed in details below.

2.2.1 GMM: Probability of buttons.
Given a start point feature vector 	v,	 the
probability of button 𝑏V is denoted as 𝑝(𝑏V|𝑣).
In flick keyboard, we assume that the touch
point coordinates of the button follow a two
dimensional Gaussian distribution which proved
by the stat of button “あ” from volunteers’
feedback, as shown in Figure 3.

	
Figure 3: The button touch coordinates

Therefore, GMM [4] with K Gaussian is
adopted in our model, where K=12 according to
the flick keyboard. The probability of vector 𝑣
can be formulated as below,

𝑝 𝑣 = 𝜙V𝑁 𝑣|𝑢V, 𝛴V

f

VgO

7 	

― 948 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

𝑁 𝑣|𝑢V, 𝛴V =
𝑒𝑥𝑝 − 𝑣 − 𝑢V i𝛴jO(𝑣 − 𝑢V)

2
2𝜋 𝛴

8 	

The parameter 𝜙V is the weight of every
Gaussian distribution and 𝑢V, 𝛴V are the mean
and variance of Gaussian distribution. 	For a
new given v, the probability of 𝑝 𝑏V 𝑣 	can be
formulated as,

𝑝 𝑏V 𝑣 =
𝜙V ∗ 𝑁 𝑣 𝑢V, 𝛴V
𝜙n ∗ 𝑁 𝑣 𝑢n, 𝛴nf

ngO
9 	

2.2.2 LR: conditional probability of kanas
Given a flick track 𝑒 , it is a key point to
determine the input is a tapping or a swiping.
The flick track can be represented as a vector in
the formula (1).

This problem can be modeled as a binary
classification. LR [5] is adopted in the part.

𝑝=; 𝑒 =
1

1 + 𝑒𝑥𝑝 −𝑤 ∗ 𝑒 10 	

W is the parameters in LR model. The
output 𝑝=; 𝑒 can be regard as the swiping
probability, and thus typing probability is
(1 − 	𝑝=; 𝑒).

	
Figure 4: the swiping axis

After we get the probability of swiping,
which should be assigned to the four direction
kanas. It can be measured by the similarity of
vectors. As the Figure 4 shows, the −1, 0 ,
0, 1 , 1, 0 , (0, −1) can be used to represent

the left, up, right and down direction vector
while (x6 − x5, y6 − y5) is the flick direction
vector. Then the conditional probability
assignation can be formulated as below,

𝑝 𝑐V 𝑒, 𝑏 = 𝑝=; 𝑒 ∗
𝑒𝑥𝑝t9VWuvw

𝑒𝑥𝑝t9VWuvxy
ngO

11 	

The weightT	is determined by the angle θT

between the flick direction and corresponding
axis direction.

𝑤𝑒𝑖𝑔ℎ𝑡V =
								0																									𝑖𝑓	𝜃V >

𝜋
2	

𝑐𝑜𝑠𝑖𝑛𝑒 𝜃V 																𝑒𝑙𝑠𝑒	
12 	

2.3 Language Model
Through the above model， the touch point
sequences 𝐸 are converted to the 	 kanas
sequences 𝐶V = (𝑐O, 𝑐P, … 𝑐R) with probability
𝑝WRR=; 𝐶V|𝐸 . But in fact, the kanas itself are
not independent. The relations of kanas show in
the Figure 5,

	
Figure 5: Language model of kanas

So we can build the transition probability
model between kanas，and use this model to
optimize the probability. A character-level
N-gram language model for kana is calculated
below,

𝑝 𝐶V = 𝑝 𝑐V 𝑐Vj��O, … , 𝑐VjO

Rj��O

VgO

13 	

The final model GMM-LR-LM can be
seen as a linear combination of Language model
and Correction model. The probability kana
sequence p CT E is formulated below,

𝑝 𝐶V 𝐸 = 𝛼𝑝WRR=; 𝐶V 𝐸 +
1 − 𝛼 𝑝�W;<R 𝐶V 	 14 	

Finally， we can search the words in
dictionary according to the kana sequence. The
model will generate more different kana
sequences, and every sequence has a proper
probability. These probabilities can affect the
order of words.

3 Experiment

3.1 Data and Evaluation
The training dataset is constructed from
volunteers’ feedbacks. An entry consists of the

― 949 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

raw input trajectory and the original button that
the keyboard recognizes. 101K entries are used
to train the GMM-LR model. Regarding the test
dataset, we invited a group of colleagues to
input specified sentences in hiragana by
conventional flick keyboard. If input error
happens, they are asked to keep it. Finally 5350
entries are collected for test dataset，including
510 wrong entries.

The test set of data are mapped to the same
keyboard layout input method, according to the
auto-correction model of the input method,
combined with the language model, calculate
the correct entry number of words and wrong
correct entry number. In fact, we only pay
attention on the first candidate from input
method applications. So if one case is good, the
first candidate must equal to the target, else this
case is bad. The evaluation measure is
conventional Recall, Precision and F-score.

3.2 Experiment and Result
In Correction model, the conventional EM
algorithm is used to train the GMM model and
K is set to 12 in MM. LR learning algorithm is
SGD, and the loss function is cross-entropy.
N-gram is set to 3.

Table 1: The result of the contrast experiment

 Recall Precision F-score

Third-Party 58.8% 93.75% 72.3%

Rule-based 19.6% 90.5% 39.2%

GMM-LR-LM 72.5% 94.8% 82.2%

This table shows that GMM-LR-LM
improves the correction obviously. Comparison
to the traditional rule-based method, the recall
rate and F-score have been improved greatly,
the accuracy also has a certain promotion.
Meanwhile, compared with the third-party input
method (tens of millions of users), the
indicators of new auto-correction model are
better, but the method of the third-party input
method is not published. However, the wrong
rate is still above 5%，these errors affect the
user experience very much. We need to consider
more advanced models to improve accuracy and
recall.

In the model, some of the features are
assumed to be independent, ignoring their
internal relations, but in practice this is not good
assumption. Therefore, more advanced models
can be considered and the potential
relationships between these features can be
constructed. For example, the GMM model and
the LR are calculated separately and can be
combined into a higher-dimensional GMM. In
addition，the features are manually selected, we
can consider using deep learning models [6] to
introduce more hidden features.

4 Conclusion
In this research，we propose the GMM-LR-LM
auto-correction model for flick keyboard input.
The model adopts features originated from
touch screen interaction and context features
from language model to perform error
correction. The performance of auto-correction
has been greatly improved. Our future work will
continue to optimize the model and to learn the
local self-adaption of auto- correction.

Reference
[1] Kukich K. Techniques for automatically correcting

words in text[J]. ACM Computing Surveys (CSUR),
1992, 24(4): 377-439.

[2] Wagner R A, Fischer M J. The string-to-string
correction problem[J]. Journal of the ACM (JACM),
1974, 21(1): 168-173.

[3] Cai F, De Rijke M. A survey of query auto
completion in information retrieval[J]. Foundations
and Trends® in Information Retrieval, 2016, 10(4):
273-363.

[4] Ding Q, Han J, Zhao X, et al. Missing-data
classification with the extended full-dimensional
Gaussian mixture model: Applications to EMG-based
motion recognition[J]. IEEE Transactions on
Industrial Electronics, 2015, 62(8): 4994-5005.

[5] Menard S. Applied logistic regression analysis[M].
Sage, 2002.

[6] Zhao, Dan, and Jian Sun. "Research on the
Automatic Error Correction Model Combined with
Artificial Intelligence for College English Essays."
Journal of Residuals Science & Technology 13.5
(2016).

― 950 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

