
Identifying Current Issues in Short Answer Grading

Tianqi Wang†,‡ Tomoya Mizumoto‡ Naoya Inoue† Kentaro Inui†,‡

†Tohoku University ‡RIKEN Center for Advanced Intelligence Project (AIP)
{outenki, naoya-i, inui}@ecei.tohoku.ac.jp

tomoya.mizumoto@riken.jp

1 Introduction

Short answer grading (SAG) is the task of automati-
cally assessing the short answers to questions, partic-
ularly in an educational context. Suppose the follow-
ing examination question Q from a computer science
domain and the reference answer R:

(1) Q: What is the scope of global variables?
R: File scope.

Given a query answer (e.g. “The entire program.”,
“main() function.”), the task is to evaluate the cor-
rectness of the answer with respect to the reference
answer (e.g. 5, 0). SAG is expected to be useful
in many real-world applications such as automated
assessment of student answers in examinations.

In recent years, a number of datasets have been re-
leased such as SciEntsBank [3] and X-CSD [5], which
leads to creating a number of computational models
for SAG [6, 1]. However, the performance of SAG is
still limited, which hampers applying SAG to real-
world applications. For example, a state-of-the-art
system for SciEntsBank achieved 0.643 of weighted
F1 score in 5-ways scoring [7]. Furthermore, it has
not been explored what issues remain for creating a
better SAG system yet in the literature.

This paper aims at making these issues clear. For
this aim, we create a simple SAG system which is eas-
ily analyzable but comparable to the state-of-the-art
systems. We employ a simple k-Nearest Neighbors
(kNN)-based system, where the instances, namely
answers, are simply represented by additive word
vectors. Our experiments show that the kNN-based
system achieves reasonable performance compared
to the state-of-the-art approaches. In addition, our
detailed analysis of the system’s behavior highlights
some remaining issues of SAG.

2 kNN-based SAG

2.1 Overall framework

To reveal current challenges in SAG, we would like
an SAG system to satisfy at least three requirements:
(i) the framework should be transparent enough to
analyze; (ii) the confidence value of prediction should

be able to be estimated for real world applications;
and (iii) the model should not be too simple, but
ideally comparable to state-of-the-art approaches.

Given these requirements, we chose to employ k-
Nearest Neighbors (kNN) classification algorithm as
an overall framework. More specifically, we create a
kNN classifier for a single question. Given a question
q, set D of score-labeled answers, query answer a,
and a distance function d, the task of the kNN clas-
sifier is to return the score of a based on k-nearest
score-labeled answers in D. To obtain a sophisti-
cated vector representation of score-labeled answers,
we train a vector representation of answers in a su-
pervised manner.

2.2 Answer representation

Because the importance of words in answers is dif-
ferent, we represent a vector ~S(a) of an answer a as
the weighted sum of word vectors:

~S(a) =
1

|W (a)|
∑

i∈W (a)

wi~vi, (1)

where W (a) is a set of words in a, wi is the weight
of word i, and ~vi is a word vector of i.

We train the word weights w in a supervised man-
ner, so that (i) the distance between answers with
different scores are maximized, and (ii) the distance
between answers with the same scores is minimized.

Formally, given a set D of score-answer pairs
(si, ai) for a single question, we minimize the fol-
lowing loss function:

L =
1

|D|2
∑

(si,ai),(sj ,aj)∈D×D

l(ai, aj), (2)

where l(ai, aj) is the loss between a pair of answers
ai, aj :

l(ai, aj) =

{
1− sim(ai, aj) if si = sj

sim(ai, aj) otherwise,
(3)

where sim(ai, aj) is cosine similarity between ~S(ai)

and ~S(aj).

2.3 Experiments

Settings. To ensure that the present kNN-based
approach achieves reasonable performance, we eval-

― 480 ―

言語処理学会 第24回年次大会 発表論文集 (2018年3月)

Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

Dataset X-CSD [5] SciEntsBank [3]
Domain Computer Science Nature Science

#Questions 87 135
#Reference answers 87 135

#Answers 2,442 4,969
Scores 0-5 2 or 5-ways

Table 1: Statistics of the datasets used in our exper-
iments.

kNN State-of-the-art
X-CSD 1.133 0.887 [9]

SciEntsBank (2 ways) 0.757 0.773 [7]
SciEntsBank (5 ways) 0.606 0.643 [7]

Table 2: Comparison of root-mean-square error on
X-CSD and weighted average F1 scores on sciEnts-
Bank: results of kNN in our experiments compared
to state-of-the-art results.

uate our approach on two popular datasets in SAG:
X-CSD [5], and SciEntsBank [3]. The details of these
datasets are shown in Table 1. For SciEntsBank,
we use the 5-way classification setting. We used
Euclidean distance as the distance function of kNN
and employed distance-based voting for final deci-
sion. We conducted leave-one-out evaluation for each
question, where all answers except a query answer
are used for training word weights w. We initialize
vi with 300 dimension of GloVe word embeddings1

and fix them during training. Word weights w are
initialized with 0.

Results. The results are listed in Table 2. Consid-
ering that our approach is fairly simple, the result
indicates reasonably high performance compared to
that of the state-of-the-art models [9, 7]. By using
the simple approach and model, we can analyze the
results to determine the reason behind the perfor-
mance.

3 Discussion

3.1 Statistics analysis

We show the distribution of prediction in Figure 1.
This indicates that the prediction is biased towards
five and it is hard for the model to correctly predict
the scores of answers with low scores.

This leads to a hypothesis that answers with lower
scores are more diverse than those with higher scores.
To verify this, for each question, we calculated the
average distance between answers for each group of
answers with the same scores in X-CSD. Here we
represent the answers as:

~S(a) =
1

|W (a)|
∑

i∈W (a)

~vi (4)

where W (a) is the set of words in a, and ~vi is the
vector of word i ∈W (a).

1https://nlp.stanford.edu/projects/glove/

Figure 1: Distribution of multi-label classification re-
sults of kNN on X-CSD. The number in each square
is proportion in percentage normalized by row.

We calculate the average and standard deviation
of distance between each pair of answers with same
score for each question, and calculate the mean of av-
erage distance and standard deviation for each score.
Figure 2 shows the result, which verifies our hy-
pothesis.The mean distance decrease with increase of
score, meaning answers with higher score are more
similar to each other.

3.2 Error analysis

Figure 3 shows the proportion of errors of results
with different confidence on X-CSD. The proportion
of answers with errors of 0 increases with confidence,
and up to 90% after the confidence gets to 0.99.

We manually analyzed the top 20-most confident
errors because the prediction errors with higher con-
fidence are more critical. As the confidence c of pre-
diction, we use the distance between a query answer
and its nearest neighbors as follows:

c = 1− 1

k

k∑
i=1

Di/Dmax, (5)

where k is the number of nearest neighbors, Di is the
distance between a query answer and its i-th nearest
neighbor, and Dmax is the maximum of the distance.

Two major sources of errors are revealed from our
analysis, and we show two instances of them in Fig-
ure 4.

3.2.1 Miss of key words

We consider highly weighted words as key words for
classification. Answers consisting of a few words are
unlikely to have key words, especially when the score
of answer is low. The reasons could be summed to:

• Answers with lower scores are more diverse, as
we have discussed with Figure 2. The diversity
makes it harder to learn word weights.

― 481 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

Figure 2: Average distance between answers graded
to same score. There is very few answers with score
0, hence we did not plot them in the figure.

• The more words a query answer has, the more
possible for it to contain words in training an-
swers with learned weights of them. When a
query answer has few words, it is less possible
to contain a key word learned from the training
answers.

For example, in question 4.7 shown in the top of
Figure 4, the answer Query#1 is scored to 1 by our
model, but the gold-standard score is 2.5. Notice
that there are no key words found in this answer,
because words such as ‘both’ and ‘sections’ do not
appear in any answers in training data, hence the
weights of them are 0 (i.e. the initial value). Words
such as ‘stored’ are contained in answers with differ-
ent scores, so they are not highly weighted.

When there is no key word in a query answer, the
distance between the query answer and answers in
training data will be decided as following:

• Answers with few key words contained are easy
to be far away from the query answer in fea-
ture space, because the distance between the key
word and the words in the query answer are em-
phasized by the weights of key words. For ex-
ample, the score of Train#28 is the same as the
gold-standard score of the query answer, but it is
not a nearest neighbor because of its key words.

• Distance between query answer and answers
containing no key word is decided by their com-
mon words. Because the weight of none word is
greater than others, the more common words a
pair of answers have, the more similar they are.
Take Train#30 as an example, it is the near-
est neighbor of query answer because of it has
the common words ‘they are stored in’ with the
query answer.

• For answers with many key words, the distance
to the query answer depends to the key words.
The representation of answers are effected by
all the key words, making the distance to the
query answer difficult to predict, like Train#1
and Train#4.

Figure 3: Proportion of errors with various confi-
dence of results on X-CSD.

3.2.2 Incorrect key words
In the instance of question 9.6 shown in the bottom of
Figure 4, the word ‘enqueue’ and ‘dequeue’ are found
as key words, because they only appear in answers
with some certain scores. On the other hand, weights
of words like ‘push’ tend to be 0 because they appear
in answers with different scores, which means that
they are not important for classification.

The meaning of sentences containing one same key
word may be different depending on the context of
it, as what happened to the query answer in this in-
stance. The true score of answer Query#1 is 2.5, but
it is scored to 5. It contains one single key word ‘en-
queue’, and the other words are weighted near to 0.
The vector generated for query answer is close to the
word vector of ‘enqueue’, hence it is near in feature
space to almost answers containing ‘enqueue’, such
like Train#8, Train#4 and Train#3. But the impor-
tant words to represent the query answer is not ‘en-
queue’ but ‘opposite of the enqueue’, which caused
the error. Moreover, errors caused by incorrect key
words are easier to happen to answers whose length
is very short, because of the lack of key word.

3.2.3 Possible solution

For the first reason of errors, we could use weight of
words in training data that are similar to words in
query answers as the learned weight, to avoid the lack
of key word. For the second one, weights of phrases
could be computed. For example, we could learn
the weight of ‘opposite of the enqueue’ to avoid the
problem happened to instance of question 9.6. The
information of sentence structure such as dependency
graph may also help solve the problem.

4 Related Work

Roy et al.[8] proposed an approach for mining com-
mon patterns between student answers and assumed
that such commonalities are characteristics of correct
answers. Mohler et al.[5] introduced a set of features
based on dependency graphs and word similarities

― 482 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

Figure 4: Error instances of question 4.7 (top) and
question 9.5 (bottom). Words in colors are highly
weighted, where the blue color stands for positive
weights and the red color stands for negative. Deeper
color means greater value weight. Nearest neighbors
around the query answer is marked with ‘*’.

for calculating the distance between student answers
and model answers. Adhya and Setua [1] computed
the similarity based on the friendship graph. In [2],
the authors proposed generic text similarity features
including alignment, semantic vector similarity, and
length ratio to calculate similarities between student
answers and model answers. As mentioned previ-
ously, many works generally score the student an-
swers based on the distance to the model answer.
Magooda et al.[4] use similarity features of word-to-
word similarity and text-to-text similarity for gen-
erating a vector of sentences. They then score the
answers based on the cosine similarity between stu-
dent answers and model answers.

Considering the datasets we used in our analysis
work are popular in the related researches, the find-
ings on properties of short answers such as diversity

and the influence from the short length may also help
understand the performance of other approaches on
SAG problem.

5 Conclusion

In this work, we have analyzed the results of a sim-
ple SAG approach in order to observe the issues for
the task of SAG. We used kNN to score query an-
swers, where vector representations of answers are
generated from weighted, pre-trained word embed-
dings. While our approach is simple and trans-
parent enough for analyzing its behavior, our ap-
proach is comparable to other state-of-the-art SAG
approaches, especially for 2-way classification. By
analyzing the errors of our approach, we showed
how the diversity and short length of answers caused
problems to SAG. Statistics analysis also showed
some properties of short answer scoring such as di-
versity of answers.
Acknowledgement This work was partially
supported by JSPS KAKENHI Grant Number
16H06614.

References
[1] Soumajit Adhya and SK Setua. Automated short answer

grader using friendship graphs. In Proceedings of ACITY
2016, volume 6, pages 13–22, 2016.

[2] Eric Brill, Susan Dumais, and Michele Banko. An analysis of
the askmsr question-answering system. In Proceedings of the
ACL-EMNLP 2002, pages 257–264. Association for Compu-
tational Linguistics, 2002.

[3] Myroslava O Dzikovska, Rodney D Nielsen, Chris Brew, Clau-
dia Leacock, Danilo Giampiccolo, Luisa Bentivogli, Peter
Clark, Ido Dagan, and Hoa T Dang. Semeval-2013 task 7:
The joint student response analysis and 8th recognizing tex-
tual entailment challenge. Technical report, NORTH TEXAS
STATE UNIV DENTON, 2013.

[4] Ahmed Ezzat Magooda, Mohamed A Zahran, Mohsen Rash-
wan, Hazem M Raafat, and Magda B Fayek. Vector based
techniques for short answer grading. In Proceedings of
FLAIRS Conference, pages 238–243, 2016.

[5] Michael Mohler, Razvan Bunescu, and Rada Mihalcea. Learn-
ing to grade short answer questions using semantic similarity
measures and dependency graph alignments. In Proceedings
of ACL 2011, pages 752–762. Association for Computational
Linguistics, 2011.

[6] Michael Mohler and Rada Mihalcea. Text-to-text semantic
similarity for automatic short answer grading. In Proceedings
of the EACL 2009, pages 567–575. Association for Computa-
tional Linguistics, 2009.

[7] Brian Riordan, Andrea Horbach, Aoife Cahill, Torsten Zesch,
and Chong Min Lee. Investigating neural architectures for
short answer scoring. In Proceedings of the BEA 2017, pages
159–168, 2017.

[8] Shourya Roy, Sandipan Dandapat, Ajay Nagesh, and Y Nara-
hari. Wisdom of students: A consistent automatic short an-
swer grading technique. In Proceedings of 13th ICON-2016,
page 178, 2016.

[9] Md Arafat Sultan, Cristobal Salazar, and Tamara Sumner.
Fast and easy short answer grading with high accuracy. In
Proceedings of HLT-NAACL 2016, pages 1070–1075, 2016.

― 483 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

