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概 要

For Chinese and Japanese, there is no distinct

word boundary. Word segmentation is widely ap-

plied as a pre-processing step in neural machine

translation (NMT) pipelines. However, conven-

tional segmenters probably produce massive rare

words. NMT cannot make use of such rare words

because it commonly limits the vocabulary to most

high-frequency words. In this paper, we inves-

tigate unsupervised word segmentation using the

principle of Minimum Description Length (MDL).

We propose a novel two-phase MDL-based method

for word segmentation. Experimental results show

that our method improves over the strong base-

line (monolingual segmenters, e.g., Juman/Stanford

Segmenter) for the WAT Japanese–Chinese and

Chinese–Japanese translation tasks by up to 1.5 and

2 BLEU points, respectively.

1 Introduction

For the languages without distinct word bound-

aries, e.g., Chinese and Japanese, word segmentation

is widely applied as a pre-processing step in many

tasks of natural language processing (NLP). Differ-

ing from phrase-based statistical machine transla-

tion (SMT) [8], in which makes use of phrase pairs

for translation, neural machine translation [9] treats

words as atomic units for processing. NMT pipeline

for these languages requires word vectors as the in-

put for the network to train the neural model. There

are many publicly available segmenters, e.g., Juman,

KyTea, Mecab for Japanese and ICTCLAS, Stan-

ford Segmenter for Chinese. Translation results vary

with different segmentation tools used, which mainly

because segmentation consistency and granularity of

those tools are different. [2] show that segmentation

consistency and granularity will affect the final SMT

results. For NMT, there is a similar conclusion can

be drawn from the recent Workshop on Asian Trans-

lation (WAT) [10], a simple change in segmenters

does not make any big influence on NMT systems.

However, conventional segmenters are prone to

generate massive rare words, and most of the low-

frequency words will be discarded during training.

In this paper, we investigate and tackle the rare

word/out-of-vocabulary (OOV) problem within the

scope of word segmentation. We propose a novel

unsupervised segmentation approach with fixed vo-

cabulary for NMT. Firstly, based on the principle of

minimum description length [5], the size of vocabu-

lary will continue to grow in an iterative procedure.

Secondly, the inferred codebook allows reuse for word

segmentation.

2 OOV Problem in NMT

NMT achieves state-of-the-art performance in

large-scale translation tasks. It trains single neural

network with a large parallel corpus. We use Figure 1

to illustrate the NMT system used in this paper. Our

baseline system is an NMT with attention mecha-

nism [9] which follows the encoder-decoder architec-

ture. Both encoder and decoder are recurrent neu-

ral networks (RNN) with a Long Short-Term Mem-
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図 1: Bidirectional LSTM encoder-decoder architec-

ture with attention mechanism for NMT.

ory (LSTM). Given the source sentence, the decoder

generates one target word at a time, which tries to

find the target word with the maximal conditional

probability among all target words in the vocabu-

lary. Hence, NMT models commonly limit the vo-

cabulary to 50k∼80k most frequent words to con-

trol the translation quality. However, the translation

of OOV word is simply handled by converting these

words into a single 〈unk〉 symbol. Hence, there ex-

ists an obvious problem that NMT is unable to deal

with OOV words. Previous work which explores the

problem mainly divides into two categories: Some

approaches aim to solve the OOV problem directly.

Other approaches aim to is to pre-split the rare words

into higher frequency subwords [12, 13]. These ap-

proaches provide a good balance between flexibility

of single characters and the efficiency of full words,

which have exhibited impressive results in morpho-

logically rich languages.

3 MDL-based Segmentation

3.1 Minimum description length

Minimum description length has been previously

used in various NLP tasks. For example, grammar

induction [4], word segmentation [1, 14], translation

model compression [3]. Given a set of data D, the

MDL principle aims at finding the minimal model

(i.e., codebook) Φ which can describe the D. We

formalize MDL inference as:

Φ̂ = arg min
Φ

DL(D,Φ) (1)

= arg min
Φ

DL(D|Φ) + DL(Φ) (2)

The objective function divides into two components,

the model description length DL(Φ) and data de-

scription length DL(Φ).

DL(Φ) =
∑

w∈Φ

len(w) (3)

Given the codebook Φ, we can segment the data.

The total data description length is calculated as:

DL(D|Φ) = −
∑

w∈Φ

#w(log #w − logN) (4)

where #w is the count number of word w (coding

entry). N it the count number of all tokens in data.

len is the length of characters of the lexicon.

3.2 Proposed method

For Chinese and Japanese, character vocabulary

size is further smaller than the size of fixed vocabu-

lary for NMT. Consider the initialization stage, and

each character is an entry in the codebook. To reduce

the description length, given two adjacent characters

w1, w2, we try to insert a new entry into codebook

which a bigram w1w2 by merge w1 with w2. A greedy

method to minimizing DL is finding an new longer

entry that has the maximal △DL and updates code-

book recursively.

△DL =DL(D̃, Φ̃)−DL(D,Φ) (5)

=△DL(Φ̃,Φ) +△DL(D̃,D) (6)

Each operation of updating codebook, i.e., inserting

a longer entry and deleting shorter unused entries

if necessary, should reduce the description length at

each time. Φ̃ and D̃ is the new model and data after

insertion respectively. We employ an iterative up-

dating procedure for codebook inference. Figure 2

describes the details . The most difficult in Fig-

ure 2 is computing the description length changes.

For the model description length difference between

codebook Φ̃ and Φ,

△DL(Φ̃,Φ) =































len(w1w2) , {w1, w2} ⊂ Φ̃

len(w1w2)− len(w1)− len(w2) , {w1, w2} 6⊂ Φ̃

len(w1w2)− len(w1) , w1 /∈ Φ̃

len(w1w2)− len(w2) , w2 /∈ Φ̃

(7)
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図 2: Iterative procedure for inference of codebook.

The data change is computed as following:

(8)△DL(D̃,D) = DL(D̃|w1w2)

+△DL(w1) +△DL(w2) +O(1)

The term of △DL(w1) can be rewritten as:

(9)
△DL(w1) =#w1× log(

#w1

N
)−(#w1−#w1w2)

× log(
(#w1 −#w1w2

N −#w1w2

)

The estimation of the cost for w2 is analogous to w1.

Additionally, the insertion operation also affects the

frequency of other entries in codebook, the bias is

computed as follow:

(10)O(1) = (N−#w1−#w2)× [log(
N −#w1w2

N
)]

[14] point out that retrieving word indices in the cor-

pus is a challenging work and replacing on the entire

corpus is prohibitive. We use suffix array [7] for re-

membering the indices and updating the pair statis-

tic on-the-fly.

Word segmentation is processed by looking up the

codebook with longest common string matching. Al-

though this forward maximum matching algorithm is

straightforward, in the experiment, we found it can

output good segmentations.

3.3 Translation Experiments

To measure the performance, we evaluate our

method on Chinese-to-Japanese translation tasks.

Translation quality is measured by the BLEU [11]

and RIBES [6] metrics.

表 1: Chinese-Japanese and Japanese–Chinese trans-

lation results on ASPEC Corpus. Boldface indicates

no significant difference with the best system. FMDL

stands for MDL with fixed vocabulary.

ja → zh zh → ja

BLEU RIBES BLEU RIBES

baseline 31.12 82.51 39.61 86.34

BPE 32.60 84.33 41.62 86.70

WPM 32.28 84.28 41.87 86.84

FMDL 32.64 84.67 41.90 86.78

Our baseline system is a NMT system armed with

a bidirectional LSTM encoder (two layers RNN),

a stacked-LSTM decoder (two layers RNN) and a

global attention layer. It is similar to the system

configuration proposed in [9] without any <unk> re-

placement. For all experiment, we have used the

basic setting following the baseline system in Work-

shop on Asian Translation (WAT) translation cham-

pion. For word embedding, we limit both the source

and target vocabulary to 50k with 500 dimensions for

each word vector in our experiments. The size of hid-

den states is 500. We also compare our method with

other segmentation methods, e.g., byte pair encoding

(BPE) [12] and wordpieces model (WPM) [13]. We

limit both the source and target vocabulary to 50k

for all segmentation models.

4 Conclusion

We proposed a novel unsupervised MDL-based

method for NMT. Differing from the previous MDL-

based method, our approach limits the vocabulary

to a fixed size. We also compared our method

with other state-of-the-art unsupervised segmenta-

tion methods for NMT. Our MDL-based segmenta-

tion achieved the comparable results in the Chinese–

Japanese and Japanese–Chinese end-to-end NMT

experiments.

Remark

A similar paper has been submitted to an interna-

tional conference.
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