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1 Introduction

To automatically evaluate the performance of a ma-
chine translation (MT) system is no less difficult a
task than the automatic translation task itself. The
most widely used measure in research community is
the BLEU score [1], which can be interpreted as an
arithmetic mean of the precision on N -gram match-
ing with a brevity penalty, where N usually is up to 4
in practice. As the N -grams used in BLEU are local
features, which cannot reveal the structured informa-
tion in transltion, metrics applying word order fea-
tures are proposed. A typical one is RIBES [2], where
word order is measured by Kendall’s τ and com-
bined with weighted uni-gram precisions. RIBES has
shown especially high correlation with human eval-
uation in translation tasks requiring large amount
of reordering operations, e.g., translation of long
sentences between English and Japanese. However,
BLEU is still a more human-correlated measure on
those translation tasks not requiring reordering op-
eration so heavily.

In our opinion, how to intuitively combine the lo-
cal features and global structural features is an im-
portant issue in automatic evaluation metrics of MT.
In BLEU, as mentioned, there is no structured fea-
tures used, while in RIBES, the two kinds of fea-
tures are combined with specific weights. Once such
hyper-parameters are introduced, metrics then easily
turn task-specific, with loss of generality at a certain
level. Moreover, the meaning of hyper-parameters
are usually hard to interpret. This is an crucial
reason on why BLEU is so widely used despite its
obvious defects. As there is no hyper-parameters,1

BLEU is quite easy and intuitive to interpret, say,
even if BLEU has only a mediocre correlation with
human evaluation, at least we know a high BLEU
score means a high precision on N -gram matching.

In this study, we proposed a measure based on
twice common subsequence matching operation, re-
ferred to as double common subsequence (dcs) score.
The first matching provides a component cs1, which

1Actually, the largest order of N -grams is a parameter, but
a fixed 4 is overwhelmingly adopted.
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Figure 1: Taking ABCDE as a reference string, sev-
eral metrics for the string of EABFD. cs0 is a simple
normalized length of longest common subsequence.
cs1, cs2 and dcs can be intuitively interpreted as
the square root of the ratio of corresponding areas.
(S2 are depicted symmetrically as two triangles to
indicate it is a kind of “monotone bonus” for subse-
quences AB and D)

reveals the local features by the length of matched
subsequences, based on which a second-order match-
ing provides a component cs2, showing the mono-
tone tendency among the matched subsequences.
The dcs score is a geometric mean of cs1 and cs2.
Details of the proposed dcs will be described in Sec. 3
and an example is shown in Fig. 1 for intuitive un-
derstanding. Basically, the dcs is still a measure
based on matching of MT output and reference by
human translation, like BLEU and RIBES. However,
we designed it with special merits as follows.

1. no parameter needed to be tuned

2. applicable on character-level for languages with-
out word separators, e.g., Chinese and Japanese

3. local and structured features combined naturally

We evaluate the proposed measure on translation
tasks at Workshop on Asian Translation (WAT) [3,
4, 5, 6]. We have found that cs2 component outper-
forms RIBES on heavily reordering-required tasks as
English-to-Japanese and Japanese-to-English trans-
lations, as well as monotonous translation task of
Korean-to-Japanese. On tasks requiring medium re-
ordering such as Chinese-to-Japanese and Japanese-
to-Chinese translation, the dcs score can provide a
stable performance comparable with BLEU, without
the affects introduced by tokenizing.
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2 Related Work

Besides the mentioned BLEU and RIBES, various
metrics for MT evaluation have been proposed. A
simple and widely used category is to compare one or
more references translated by human with the output
of an automatic MT system. The BLEU and RIBES
are both belong to this category. Other metrics in
this category including editing distance based mea-
sures such as TER [7], and a pack of recall based mea-
sures called ROUGE [8] (or ORANGE [9], for sev-
eral common sequence based metrics). More sophis-
ticated metrics may rely on linguistic analysis where
a typical measure is METEOR [10, 11]. Metrics in
this category generally require well prepared mono-
lingual data. Another line of research is reference-
free evaluation, where evaluation models are trained
from parallel data. A recently proposed measure is
AMFM [12]. This kind of metrics can capture deeper
semantic features but requires considerable parallel
data to train numerous parameters.

3 Proposed Method

The proposed method is inspired by ROUGE-L [8],
which is a measure by longest common subsequences
(LCS) between reference and MT output. As ad-
dressed, the combination of local and structured fea-
tures is an important issue for evaluation metrics.
The LCS can thus combine the two kinds of features
to a certain extent. However, there are still limita-
tions by simple LCS as, 1) the granularity of matched
strings are not addressed enough and 2) the non-
monotone matched parts are not taken into consid-
eration. For 1), an improved ROUGE-W [8] has been
proposed to weight longer continuous subsequences
more, while 2) is an intrinsic problem of LCS that it
can only choose one path in matching, and features
not lying on the optimal path are all neglected.

We improve LCS-based methods in two steps.
First, rather than the optimal longest path in LCS

is considered, we take all non-nested common subse-
quences into consideration. That is, we collect all lo-
cal continuous matched subsequences no matter the
relative order among them. Taking Fig. 1 as an ex-
ample, there are three such subsequences of AB,2 D,
and E. Notice the subsequence of E will be omitted if
only the LCS (i.e., ABD) is considered. Such a set of
common subsequences can provide a more complete
set of local matching features, while the structured
information contained in LCS is lost. Therefore, a
second common subsequence matching is conducted
to filter out the monotonous parts within the results
of the first matching. The basic unit in the second
matching is the subsequences obtained in the first

2A and B are also common subsequences while they are the
nested parts of AB.

matching, e.g., the (AB, D) pair is identified as a
monotonous pair in Fig. 1. Hence, the structured
information lost in the first matching is brought in
by the second matching.3

Based on the two steps of matching, we can cal-
culate two components for local and structured fea-
tures respectively. Inspired by the weighting method
in ROUGE-W and intuitiveness, we set the over-
all framework in a quadratic manner. As shown
in Fig. 1, the cs1 component for local features is
the square root of the summation over the squared
lengths for all subsequences in the first matching; the
cs2 component for structured features is the square
root of the summation over terms proportional to
the lengths of neighboring monotonous subsequence
identified in the second matching; and an overall
dcs is equal to

√
cs12 + cs22. Considering two com-

mon subsequences with lengths of x and y, because
(x + y)2 > x2 + xy + y2 > x2 + y2 is always true
when x > 0, y > 0, dcs most appreciates long and
continuous common subsequences (i.e., when the two
subsequences are concatenated to one with a length
of (x+y)), and moderately appreciates common sub-
sequences with a monotonous order (i.e., there is an
extra xy term added to x2 +y2, which, after all, can-
not be larger than (x+ y)2).4 The Python codes5 of
our implementation of dcs is presented in Table 1.

4 Evaluation

We selected tasks having no less than ten attend-
ing teams at WAT and calculated the Pearson’s ρ
between the human-evaluation score and automatic
metrics. The official evaluation metrics in WAT are
BLEU, RIBES, and AMFM. The BLEU and RIBES
for Chinese and Japanese are based on different tok-
enizers, while AMFM are character-based. For tasks
with the two languages as target language, we also
added character-based BLEU of 4- and 8-grams in
comparison. As to the proposed methods using com-
mon subsequences, we first tested the simplest LCS-
based measure, i.e., cs0 in Fig. 1. This measure is
essentially identical to ROUGH-L but the normal-
ization way on sentence length is slightly different.
The dcs and its components of cs1 and cs2 are
evaluated respectively. All the common subsequence
based measures were conducted on character-level
for Chinese and Japanese. Text normalization on
digits and punctuation marks were according to the
instruction of the WAT.

3The second step matching may provide more structured
features than LCS, because it is possible to have monotonous
subsequences away from the optimal path.

4If the xy term is weighted in (0, 2), the relation is still true
and we will have a dcs with weighted cs1 and cs2.

5Executable under Python 2.x. As the filter () does not
return a list in Python 3.x, slight modification will be needed.
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def nosub (x, y, s) :
good = []; xm, ym = [1 for i in x], [1 for i in y]; xp, yp = [0 for i in x], [0 for i in y]
s.sort (key = lambda x : -(len (x [0])))
for i,j in s :
X, Y, L = j [0], j [1], len (i)
if sum (xm [X-L:X]) and sum (ym [Y-L:Y]) :

xm [X-L:X], ym [Y-L:Y] = xp [X-L:X], yp [Y-L:Y]; good.append ([i,j])
return good

def rank (s) :
s.sort (key = lambda x : x [-1][0]); for i in range (len (s)) : s [i][-1][0] = i+1
s.sort (key = lambda x : x [-1][-1]); for i in range (len (s)) : s [i][-1][-1] = i+1
return dict ([(tuple (j),i) for i,j in s])

def score (ss, s, x, y) :
A, S0, S1, S2 = (len (x) * len (y)) ** 0.5, [0.], 0., 0.
for i in ss :
S0.append (sum ([len (s [x]) for x in i]))
for j in range (len (i)) : S1 += len (s [i [j]]) ** 2
for j in range (len (i)-1) : S2 += len (s [i [j]]) * len (s [i [j+1]])

return max (S0)/A, (S1**0.5)/A, (S2**0.5)/A, ((S1+S2)**0.5)/A
def table (lx, ly) : return [[[] for j in range (ly+1)] for i in range (lx+1)]
def prod (lx, ly) : return [(i,j) for j in range (1,ly+1) for i in range (1,lx+1)]
def dcs (x, y) :

if not x or not y : return 0., 0., 0., 0.,
t, p = table (len (x), len (y)), prod (len (x), len (y)) # 1st cs
for (i,j) in p :
if x [i-1] == y [j-1] : t [i][j], t [i-1][j-1] = t [i-1][j-1]+[x [i-1]], []

s = rank (nosub (x, y, filter (lambda x : x [0], [[t [i][j], [i,j]] for (i,j) in p])))
t, p = table (len (s), len (s)), prod (len (s), len (s)) # 2nd cs
for i in s : t [i [0]][i [1]] = [i]
for (i,j) in p :
if t [i][j] : t [i][j], t [i-1][j-1] = t [i-1][j-1]+t [i][j], []

return score (filter (lambda x : x, [t [i][j] for (i,j) in p]), s, x, y)

Table 1: Python implementation of dcs. Two parameters of dcs () are the two strings under comparison. Four
scores will be returned by dcs (), in the order of cs0, cs1, cs2, and dcs as illustrated in Fig. 1.

The numerical results are listed from Tables 2 to 5.
Generally, in tasks requiring heavy reordering as
English-to-Japanese and Japanese-to-English trans-
lation (Tables 2 and 4), cs2 has the best performance
in most cases, even better than RIBES. An interest-
ing fact is that, on the Korean-to-Japanese transla-
tion (right at Table 5), which is a task nearly re-
quiring no reordering, cs2 is the only measure gives
a moderately positive performance. It seems cs2

is quite suitable for translation tasks with extreme
operations, no matter heavy or none, on word re-
ordering. However, on tasks requiring moderate re-
ordering such as Chinese-to-Japanese and Japanese-
to-Chinese translation, dcs gives a more stable per-
formance. Notice LCS-based cs0 is not bad a mea-
sure considering the simplicity, and cs1 itself is not
so good a measure in most cases because it does not
contain much structured information.

The correlation between human-evaluation and
automatic metrics may be affected by various factors.
It is obvious that the ASPEC-16 in Tables 2 and
4 has very low ρ’s. We consider it is because most
teams switched to NMT approaches from this year.
In Table 3, the ASPEC and JPC tasks show dif-
ferent tendencies among metrics, where it seems the
ASPEC task requires more word reordering than
that in JPC task. As mentioned, the automatic
evaluation itself is a non-trivial task, we consider the
dcs score (and the cs2 in it) provides an alternative
method which is intuitive and efficient enough.

5 Conclusion

We proposed an MT evaluation measure of dcs score.
From the evaluation on WAT tasks, dcs shows com-
parable performances as BLEU and its cs2 compo-
nent is better than RIBES. We plan to investigate
the feasibility of the method in future WAT tasks.
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