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1 Introduction
The goal of the Vision-and-Language Navigation

task (VLN) [1] is to train an agent to move through
a lifelike environment using visual cues and a natural
language instruction. The agent is required to un-
derstand the provided instruction and decide which
action to take in order to get as close as possible to
the target location. An example instruction can be
found in Figure 1. The agent must be able to follow
the commanded instruction even in previously unex-
plored environments.

Following navigation instructions is rather trivial
for humans but hard for an agent [1, 4]. Humans
tend to subjectively select reference points in the en-
vironment to describe a path. Therefore, we end up
with a diverse set of instructions from the same se-
quence of images in the path. This can explain why it
is difficult for an artificial intelligent agent to replicate
humans in this task.

Previous approaches to this task [4] include a
speaker-follower model. The speaker part of the
model is a method for generating navigation instruc-
tions from panoramic images and actions in a path.
The speaker model alone is useful because it can
be used to interesting and important real-life appli-
cations such as autonomous driving navigation and
virtual-reality navigation.

In this work, we focus on the navigation instruction
generation problem. We extend the speaker model by
taking into account the human behavior of selecting
diverse reference points. In addition, we consider the
fact that each view angle in a panoramic image corre-
sponds to a time step on the simulator, representing
actions Left, Right, Up, Down, Forward, and Stop.

Instruction  1:  Turn  left
and  to  towards  the
kitchen,  turn  left  at  the
kitchen  and  go  until  you
are  right  before  the
yellow  couch  by  the
picture on the right.

Instruction  2:  Leave
the  dining  room  through
the  closest  door  and
enter  the  kitchen.  Turn
left  and  walk  straight
down  the  room  past  the
refrigerator,  dining  area,
and  sitting  area.  Stop  in
front of the fireplace.

Instruction  3:  Walk
forward  into  the  kitchen
and  take  a  left.  Walk
through the kitchen. Stop
next  to  the  fireplace  in
the living room.

Figure 1: An example path for the VLN task. The
arrows beside the images represent actions in the en-
vironment (e.g., left, right, up, down, forward, stop).

Wang et al [10] noted this fact, and suggested that
the VLN task has a sequential-decision making na-
ture. The speaker model, however, uses an attention
mechanism over all the viewpoints without consider-
ing the sequential nature of the task. To resolve this
problem we create a panorama encoder which relies
on a series of LSTM layers with attention to cap-
ture the sequential nature of panoramic images. The
encoder is then used together with the Transformer
encoder-decoder model [9] to generate navigation in-
structions.

2 Related Work
Four formal research papers have been presented

so far to undertake this problem. The first work [1]
introduced the VLN task, built the Room-2-Room
(R2R) dataset, and presented a sequence-to-sequence
baseline. Their focus was to improve the accuracy of
task performance of the agent. This differs from our
main goal, which is to produce natural-language nav-
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igation instructions from panoramic images. Wang
et al [10] presented a recurrent policy network with
look-ahead modules that look at the adjacent view
angles to take advantage of the visual diversity of the
panoramic images. However, similarly to Anderson
et al. [1], they focused only on increasing the perfor-
mance of the agent.

The third paper [4] proposed the Speaker-Follower
approach, in which the speaker generates navigation
instructions from panoramic images. The follower
takes a decision by comparing the similarity scores be-
tween the generated instructions by the speaker and
the golden instruction. In this paper, we use this work
as a basis.

The last work [8] uses the attention mechanism in
transformer [9] over the text to track the progress
of the agent in the VLN task. They also use visual
attention over the images to extract features, and give
the result to a progress monitoring module. They
do not generate instructions from panoramic images,
which is the focus of our research.

3 Methodology

3.1 Panoramic action space
Similarly to [4], we define a panoramic action space.

A path P contains n viewpoints v0, v1, ..., vn. A view-
point vi is formed by a discretized panoramic image,
which has been divided into 36 view angles denoted
by k = 36. Concretely, there are 3 elevations (top,
middle, bottom) and 12 headings per elevation. In
this work, we represent the view angles as elevation
vectors T = (t0, t1, ..., t11), M = (m0,m1, ...,m11),
B = (b0, b1, ..., b11) for top, middle and bottom, re-
spectively. With this notation, we represent a view-
point vi = (T,M,B). A vertical segment vsi is de-
fined by the top, middle and bottom view angles at
position i; for example vs0 = (t0,m0, b0). In total,
we have 12 vertical segments. The action space con-
tains 6 different possibilities: Left, Right, Up, Down,
Forward, and Stop. We set the dimension d of the
hidden layer to 256.
3.2 Panoramic encoding model

The panoramic encoder consists of four left-to-
right LSTM layers L1, L2, L3, L4. The first 3 lay-
ers L1, L2, L3 process the elevation vectors T,M,B

of the time steps independently of elevations, i.e.,
(t0, t1, ..., t11) in L1, (m0,m1, ...,m11) in L2, and
(b0, b1, ..., b11) in L3. The intention is to capture the
sequential dependencies between each time step and
its neighbors.

Then, the unrolled outputs of L1, L2, L3 are
A1, A2, A3, respectively:

A1 = (a10, a11, ..., a111),

A2 = (a20, a21, ..., a211),

A3 = (a30, a31, ..., a311).

The outputs from the 3 layers are concatenated in or-
der to form a vector C = (A1;A2;A3). We then apply
a Masked Multi-head attention mechanism (MMAH)
with eight attention heads h = 8 as described in
Transformer [9]. Here the query, key and value vec-
tors Q,K, V from the MMAH are all set to C. For
the mask we have a vector IM = (im0, ...imk), with
imi = 1 if we can access the next viewpoint from
the i-th image, and imi = 0 otherwise. Each im

value is determined by the output of the simula-
tion environment. The output of MMAH is given as
(a1′0; a1

′
1; ...; a1

′
11; a2

′
0; a2

′
1; ...; a2

′
11; a3

′
0; a3

′
1; ...; a3

′
11).

For the last layer L4, we reshape the output of
MMAH to form vertical segment headings vs in the
same way as described in Section 3.1. We obtain vec-
tor VS = (vs0, vs1, ..., vs11) with vsi = (a1′i, a2

′
i, a3

′
i),

which is fed to L4 layer to obtain the vertical sequen-
tial relationships in the panoramic image with respect
to its horizontal counterparts. A second Multi-head
attention layer MMAV is used to attend the vertical
relationships.

The next step uses a feed forward layer with size
(n ∗ 12 ∗ d, tsl ∗ d) to reshape the output of MMAV to
the required token sequence length tsl = 50 + 1. We
add one token for the “<EOS>” token.

Finally, the output of the feed-forward layer is fed
to the transformer model as described in the previous
work [9]. We obtain the predicted tokens by perform-
ing the greedy decoding over the output.

4 Experiments
We first evaluate our model in terms of its ability to

generate navigation instructions from panoramic im-
ages. We present an example from a randomly gener-
ated path of an unseen building. We then use BLEU
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Figure 2: Panoramic encoding model.

score to compare our results with a baseline. We also
evaluate the use of visual diversity of the panoramic
image; we select a path in which multiple view angles
can reach the next viewpoint. We compare generated
instruction by the proposed method, the baseline, and
humans (golden instructions).
R2RDataset: The Room-to-Room dataset [1] con-

sists of 10,800 viewpoints constructed from 194,400
RGB-D images of 90 buildings from the matterport
dataset [2]. In addition, selected 7,189 sample paths
(5-7 viewpoints each) are associated with three navi-
gation instructions (21,567 instructions in total) col-
lected from Amazon Mechanical Turk (AMT). The
average instruction length is 29 words. The vocabu-
lary size is around 3.1k words (1.2k with 5 or more
mentions). We use the dataset splits reported in [1]:
training (14,025 instructions), validation seen (1,020),
validation unseen (2,349) and test (4,173).
Evaluation Metrics: We report results with the

standard BLEU score metric [6] in the validation seen
and validation unseen splits. For the qualitative eval-
uation, we show a comparison of the generated sen-
tences between the baseline, our model, and reference
(golden).
Baseline: As a baseline for our work, we selected

the speaker model presented by Fried et al [4], whose
purpose was to perform data augmentation and prag-

Model Val_seen Val_unseen
Speaker 28.3 27.5

Ours 28.5 27.0

Table 1: BLEU score (%) of the baseline and the
present work

matic inference in the VLN task.
Implementation Details: Following the previous

research, we use the pretrained visual feature vectors
provided by Anderson et al. [1]. These features origi-
nate from the final layer of a ResNet-152 [5] trained on
ImageNet [3]. We use the negative log likelihood loss
and Adam optimizer with default parameters. We
use a batch size of 16, hidden size of 256. We train
for 30,000 iterations. We use the greedy strategy for
decoding.

5 Results and Analysis
We first report the comparison of the BLEU score.

In terms of the BLEU score, our method performs
better than the baseline in the validation seen split
by a small margin. This small margin suggests that
our method is comparable with the previous work. In
the Validation unseen, however, our method performs
slightly worse. We think that the reason for the small
loss margin in the validation unseen is because we
did not use pretrained GloVe embeddings [7] for the
target words as the speaker model did. To further
analyze the results, we perform a comparison between
the good and bad examples predicted by the baseline
and our work.

Similarly to the baseline, our method can generate
instructions from paths in unknown buildings. The
example with path id 1001358 comes from the data
augmentation list provided by Fried et al. [4]. Fig-
ure 3 shows the instruction generated by our method.
While these two sentences are similar to each other,
ours tends to generate tokens that more closely re-
fer to the objects seen in the picture. For example,
in the same figure, our algorithm refers to the door
as glass door, which is appropriate. Instead the pre-
vious research use the most generic term ”doorway”.
We observe the same at the end of the sentence with
the use of the phrase ”Wait on the porch”.
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Previous work: walk  down
the hallway and  turn  right  .
walk down the hall and stop
in the doorway .

 
Our work: turn around and
go out the door . go out the
glass  door  and  go  outside  .
wait on the porch .

Figure 3: Example 1001358 speaker augmentation
split, Both algorithm are able to generate instructions
for unseen case. However, ours better identify the ob-
jects by their names

Golden: Exit  the kitchen
heading  towards  the
small  dining  nook  and
turn  right.  Continue
forward  and  take  the
entrance  ahead  and  to
the  right.  Wait  at  the
corner next to the end of
both couches. 
 
Previous  work:  turn
around  and  walk
through  the  kitchen  .
turn right and walk past
the  dining  table  .  stop
in  front  of  the  dining
table .
Our work: walk  into  the
kitchen  and  turn  right  .
walk  past  the  table  and
into  the  living  room  .
stop  in  front  of  the
fireplace .

Figure 4: Example 2068-0 validation unseen. Our
method predicts “fireplace” found in the images, al-
though it is not mentioned in the golden navigation
instruction.

Our method also seems to recognize objects that are
not present in the golden instruction but are shown
in the image. Figure 4 provides such an example, in
which the word “fireplace” appears in our prediction,
but not in either the golden instruction nor the gen-
erated instruction generated by the previous work.

More confusing examples are the ones that contains
a repetition of actions. For example, when there is a
staircase with multiple stair flights to climb, the algo-
rithm in the previous work tends to repeat the same
instruction over and over again. The same thing hap-
pens when the environment contains multiple doors
in the same place. Our method, however, benefits
from the sequential nature of the task and the use
of panoramic information to better represent the sce-
nario. See Figure 5.

Our work: walk up the stairs
. walk past  the pillars on the
left  . wait at  the edge of  the
rug .

Previous  work:  go  up  the
stairs  and  go  up  the  stairs  .
go  up  the  stairs  and  stop  at
the top of the stairs .

Golden  instruction:  Ascend
stairs,  then  walk  toward  the
kitchen area, and wait.

Figure 5: Example 5412-0 Validation unseen. We
show the most difficult examples for which our
method has a slightly better advantage by making
use of the sequential nature of the panoramic images.

6 Conclusion
We presented a method for generating navigation

instructions from panoramic images that takes advan-
tage of the sequential nature of the VLN task.
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