
Generating Syntactically Diverse Translations with Syntactic Codes

朱 中元 中山 英樹
東京大学　大学院情報理工学系研究科

{shu, nakayama}@nlab.ci.i.u-tokyo.ac.jp

January 20, 2019

1 Introduction

When using machine translation products, users may
desire to see candidate translations other than the
best one. In this scenario, users usually expect the
machine translation system to provide more candi-
dates with drastically different syntactic structures.
However, it is undesirable that the candidate transla-
tions contain less appropriate words which alter the
meaning or nuance of the source sentence.

To obtain diverse sentences, conventional NMT
models allow one to sample translations using the
beam search algorithm, but the sampled translation
results usually share similar syntactic structures. Re-
cently, various methods [7, 12] are proposed to gener-
ate sentences with high diversity. These methods en-
courage the model to use creative vocabulary during
the generation process. Most of them evaluate the
generated results with corpus-level metrics such as
the discrepancy of word distributions. Although pro-
ducing creative words benefits tasks such as conver-
sation generation, however in machine translation, it
can damage the translation quality by changing the
original meaning.

Here, we are interested in generating multiple
translations with only syntactic diversity. Once the
syntactic structure is determined, we want the model
to still select the best words for each candidate trans-
lation. To minimize the cost of modification to the
neural machine translation (NMT) models, we prefix
the target sentences with syntactic tags that indicate
their structures. As the tokens are generated in left-
to-right order during decoding, the NMT model is
forced to plan the syntactic structure before gener-
ating words. This approach can be easily integrated
to existing NMT products as no modification to the
NMT model architecture is required.

In this work, we choose the syntactic tags to rep-
resent the global syntactic structure of a sentence.
Information about local structures such as the num-
ber of words in a noun phrase is not desired and has
to be omitted in the tags. As consequence, we choose
to simplify the part-of-speech (POS) tags and use it
as a global structural representation.

To eliminate the negative impact on decoding

NMT Model

target sentence

Coding Model

he is hired by our company

<c3> <c1>

<c3> <c1> <eoc> he is hired by our companyprefixed target

syntactic codes

nuestra compañía lo contratósource sentence

part-of-speech PRP VBZ IN PRP NN

Figure 1: Proposed approach for conditioning the
syntactic structure with discrete codes. A target sen-
tence is parsed to obtain its syntactic tags. Then,
based on the tags and source sentence, the coding
model produces multiple discrete codes. Finally, an
NMT model is trained based on the original source
sentence and the target sentence prefixed by the
codes.

speed, we use a sequence auto-encoder with a dis-
cretization bottleneck to compress the sequences into
few codes. This approach is similar to the dis-
crete auto-encoder approach [6], where they capture
utterance-level information. We show that the syn-
tactic tag sequences can be compressed into one or
two codes but still maintain their effectiveness.

Fig. 1 shows our proposed approach for training
the NMT model. In the first phase, we parse target
sentences to obtain their part-of-speech tags. Next, a
coding model is trained to obtain the syntactic codes.
We prefix each target sentence in the training data
with the codes. The “⟨eoc⟩” token denotes the end of
the codes. Finally, we train an NMT model on the
modified dataset.

― 663 ―

言語処理学会 第25回年次大会 発表論文集 (2019年3月)

Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

2 Learning Syntactic Codes
This section discusses the motivation and method-
ology for learning discrete syntactic codes. First,
we describe an easy method to extract the global
sentence structure from part-of-speech (POS) tags.
Then, we describe a coding model that learns dis-
crete syntactic codes to speed up the decoding.

2.1 Extracting Global Syntactic
Structures

To construct the syntactic prior of translations, we
need a representation of syntactic structures. How-
ever, it is extremely difficult for a neural network to
automatically realize and extract the syntactic struc-
ture from the utterances. Therefore, we consider to
derive the representation of global sentence struc-
tures from part-of-speech tags, which are available
for most languages.

Normally, part-of-speech tags contain detailed in-
formation about local structures. For example, the
words “destroy” and “break down” have different POS
tags, but the difference between them are local. In
this work, we want to use the syntactic tags only for
planning the global sentence structure, other details
such as words and local structures are left for the
NMT model to fulfill.

Here, we reduce the POS tags to form a global
structural representation with a simple heuristics:

1. Remove all tags other than “N”, “V”, “PRP”,
“,” and “.”. Note that all tags begin with “N”
(e.g. NNS) are mapped to “N”, and tags begin
with “V” (e.g. VBD) are mapped to “V”.

2. Remove duplicated consecutive tags.

The following list gives an example of the process:
Input: He found a fox behind the wall.

POS Tags: PRP VBD DT NN IN DT NN .

Step 1: PRP V N N .

Step 2: PRP V N .

It should be noted that other syntactic parse re-
sults can also be potentially useful to represent the
global structure; this is left for future works to ex-
plore. In our experiments, we found simplified POS
tags to be effective and convenient for implementa-
tion.

2.2 Code Learning
Prefixing the target sentences with the simplified
tags will significantly increase the sequence length,
thus worsen the latency of translating a sentence.
To mitigate the impact, we propose to compress the
syntactic tags into few discrete codes with a code
learning model.

Code Encoder Given the sentence pair (X,Y),
let the structural tags of the target sentence be

S1S2S3S4

C̃

h̄1

C

h0

S1 S2 S3 S4

S1 S2 S3<s>

X1X2X3

s1

+

Figure 2: Architecture of code learning model. Dis-
cretization bottleneck is indicated by dashed lines.

S1, ..., ST , the encoder computes the logits of N soft-
max vectors:

h̄t = LSTM(E(St), h̄t+1;ϕe) , (1)

[C̃1, ..., C̃N] = softmax(f(h̄1;ϕh)) , (2)

where the tag sequence S1, ..., ST is firstly encoded
using a backward LSTM. E(·) denotes an embed-
ding function, and f(·) denotes a linear transforma-
tion. Then, we compute a set of continuous vectors
C̃1, ..., C̃N , which are latterly discretized into approx-
imated one-hot vectors C1, ..., CN using Gumbel-
Softmax reprarameterization trick [5, 8] as:

Ci = g(S, ϵ;ϕ)i (3)

= softmaxτ (log C̃i + gumbel(ϵ)) . (4)

Here, τ is the temperature of the softmax. The
computation of Gumbel-softmax relies on the Gum-
bel noise, which is defined as gumbel(ϵ) =
− log(− log(ϵ)). As both C̃i and ϵ are vectors in
Eq. 4, the log(·) here is an element-wise operation.
The random variable ϵ is sampled from a uniform
distribution U(0, 1). In Eq. 3, g(S, ϵ;ϕ) represents
the encoder function, which is used to produce the
codes once its parameter ϕ is trained.

Decoder In the decoder, we combine the in-
formation from X and C to initialize a decoder
LSTM that sequentially predicts the structural tags
S1, ..., ST :

st = LSTM(E(Xt), st+1; θx) , (5)
h0 = f([C1, ..., CN]; θh) + s1 , (6)
ht = LSTM(E(St−1), ht−1; θd) , (7)

where [C1, ..., CN] is a concatenation of N Gumbel-
softmax code vectors. Note that only ht is computed
with a forward LSTM. Finally, we predict the prob-
ability of emitting each tag St with

P (St|S<t, X,C) = softmax(fout(ht; θout)) . (8)

2.3 NMT with Structural Planning

Once the coding model is trained, the Gumbel-
softmax code vectors C1, ..., CN should be very close
to one-hot vectors. We can extract N discrete codes

― 664 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

by applying argmax on the softmax vectors, and pre-
fix the target sentences in the training data with the
codes, resulting in (X,C;Y) training pairs. We con-
nect the codes and target sentences with a “⟨eoc⟩”
token.

To evaluate the performance of structural planning
with discrete codes, we train a regular NMT model
with the modified dataset. The codes are removed
from the translation results after decoding. Simi-
larly, we can evaluate the tag planning model using
(X,S;Y) pairs.

3 Related Work
As generating diverse text has its application in
tasks such as conversation generation, several ex-
isting works are presented to improve the diversity
of language generation. Similar to [3], [2] gener-
ates diverse image captions with a conditional GAN,
whereas [4] generates diverse questions with a VAE.

Some creative approaches are also proposed on this
topic. [7] improves the diversity of generation by
modifying the scoring function in beam search. A hy-
perparameter that controls the diversity is optimized
by reinforcement learning. [12] learns K shared de-
coders, each is conditioned on a trainable pattern
embedding. In each iteration, only the decoder with
lowest cross-entropy receives training signal.

Existing works on language generation care about
using creative vocabulary. Both [7] and [12] mea-
sure the diversity with corpus-level metrics. The for-
mer work evaluates the number of unique n-grams in
the generated text, whereas the latter one measures
the divergence of word distributions produced by dif-
ferent style-specific decoders. Our approach differs
from these works by putting the focus on improving
the syntactic diversity instead of choice of words.

4 Experiments
We evaluate our models on two machine translation
datasets: IWSLT14 German-to-English dataset [1]
and ASPEC Japanese-to-English dataset [9]. These
datasets contain 178K and 3M bilingual pairs, re-
spectively. For the IWSLT14 De-En dataset, we ap-
ply the Moses toolkit to tokenize both sides of the
corpus. For the ASPEC Ja-En dataset, we use the
Moses toolkit to tokenize the English side and Kytea
to tokenize the Japanese side.

After tokenization, we apply byte-pair encoding
[10] to segment the texts into subwords, forcing the
vocabulary size of each language to be 20K and 40K
for the IWSLT dataset and ASPEC dataset.

4.1 Evaluation of NMT Models

Model Architecture: To create a strong NMT
baselines, we test two types of NMT models in our

Model BLEU

De-En

Deep LSTM baseline 29.5
+ tag planning 20.5

+ discrete plan (N=1, K=4) 29.5
+ discrete plan (N=2, K=4) 29.7

Ja-En

Deep LSTM baseline 25.2
+tag planning 18.7

+discrete plan (N=1, K=4) 25.3
+discrete plan (N=2, K=4) 25.6

Transformer baseline 26.0
+tag planning 26.8

+discrete plan (N=1, K=4) 27.3
+discrete plan (N=2, K=4) 27.4

Table 1: Performance evaluation for NMT models
trained with different approaches. The BLEU(%)
scores are reported using beam size of 5.

experiments: deep LSTM model and transformer
model [11]. Both models are broadly used in industry
recently.

For the deep LSTM model, we use two layers
of bidirectional LSTM encoders with two layers of
LSTM decoders in the NMT model. The hidden
layers have 256 units for the IWSLT De-En task
and 1000 units for the ASPEC Ja-En task. For the
transformer model, we follow the settings of the base
transformer. The hidden size is 512, both the en-
coder and the decoder have 6 layers.

Evaluation Results: Table 1 shows the resul-
tant BLEU scores of different models, which indi-
cates that our proposed planning approach does not
degrade the translation quality in both translation
tasks. When we use the part-of-speech tags as a prior
to directly control the sentence structure, a drop in
BLEU scores is observed for LSTM-based models.

We can observe an improvement on translation
performance especially for the transformer models.
The improvement may be the consequence of being
able to simultaneously explore drastically different
candidates. A recent study [7] also showed that beam
search performance can be improved by increasing
the diversity of the candidate space.

4.2 Evaluation of Syntactic Diversity

In our approach, a single code is not guaranteed to be
aligned to a specific structure. Therefore, we can not
evaluate the diversity with the divergence between
word distributions as [12] does. In order to quanti-
tatively evaluate the diversity of generated transla-
tions, we propose to use a simple BLEU discrepancy
metric. Suppose Y is a list of candidate translations,

― 665 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

Dataset Model DP POS-DP

De-En
baseline NMT 35.99 27.72
discrete plan 39.79 36.51

Ja-En
baseline NMT 25.89 20.28
discrete plan 52.10 45.42

Table 2: Evaluation of discrepancy scores (DP) for
the baseline model and the discrete planning ap-
proach. We also report the discrepancy scores of the
part-of-speech tags of candidates (POS-DP).

we compute the discrepancy with

DP(Y) =
1

|Y |(|Y | − 1)

∑
y∈Y

∑
y′∈Y,y′ ̸=y

1−∆(y, y′), (9)

where ∆(y, y′) computes the BLEU score of two
candidates. This equation computes the mean value
of 1 - BLEU between candidate pairs. The score is
higher when the candidates have less similarity.

In order to evaluate the syntacitc diversity, we fur-
ther propose a POS-DP metric, in which ∆(y, y′)
computes the BLEU scores using the POS tags of
two candidates. Therefore, lexical diversity is com-
pletely omitted in the scores.

We report the averaged discrepancy scores in Table
2. We first apply beam search on the baseline model
with a beam size of 4 to obtain four candidates for
measuring the baseline syntactic diversity. Then we
sample translations from a NMT with discrete code
prior (N = 1,K = 4). As there are only four possible
codes, we sample four translations and measure the
discrepancy scores of them.

We can see that the proposed method achieves
higher discrepancy scores, which means that the can-
didate translations are less similar to each other. A
larger gap in diversity is observed when evaluating
with the POS-DP metric. It indicates that the pro-
posed method creates more diversity in terms of syn-
tactic structure. In Table 3, we give a comparison
of the candidate translations sampled by the beam
search and the proposed approach.

5 Acknowledgement
The research results have been achieved by the Com-
missioned Research of National Institute of Informa-
tion and Communications Technology (NICT).

6 Conclusion
In this paper, we learn fixed-number discrete codes
to capture the syntactic structure of translations.
During translation, the syntactic codes are generated
first to constrain the word prediction. Experiments
show that the quality of the best translation is still

APの過程について述べた。

BS
process of the AP is described .

a process of AP is described .

reaction of AP is described .

PL
the process of AP is described .

this paper describes the process of AP.

here was described on process of AP .

Table 3: A comparison of translation candidates pro-
duced by beam search (BS) and the proposed plan-
ning approach (PL) for the given Japanese sentence.

guaranteed even under constraint. Performance gain
is observed when using the transformer model. By
switching with different syntactic codes, we can sam-
ple translations with drastically different structures.

References
[1] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa

Bentivogli, and Marcello Federico. Report on the 11th
iwslt evaluation campaign, iwslt 2014. In Proceedings of
the International Workshop on Spoken Language Trans-
lation, Hanoi, Vietnam, 2014.

[2] Bo Dai, Dahua Lin, Raquel Urtasun, and Sanja Fidler.
Towards diverse and natural image descriptions via a con-
ditional gan. 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 2989–2998, 2017.

[3] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. Toward controlled gen-
eration of text. In ICML, 2017.

[4] Unnat Jain, Ziyu Zhang, and Alexander G. Schwing. Cre-
ativity: Generating diverse questions using variational
autoencoders. 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 5415–5424,
2017.

[5] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. CoRR, Vol.
abs/1611.01144, , 2016.

[6] Lukasz Kaiser and Samy Bengio. Discrete autoencoders
for sequence models. CoRR, Vol. abs/1801.09797, , 2018.

[7] Jiwei Li, Will Monroe, and Daniel Jurafsky. A simple,
fast diverse decoding algorithm for neural generation.
CoRR, Vol. abs/1611.08562, , 2016.

[8] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
The concrete distribution: A continuous relaxation of
discrete random variables. CoRR, Vol. abs/1611.00712, ,
2016.

[9] Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. Aspec: Asian scientific paper
excerpt corpus. In LREC, 2016.

[10] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. CoRR, Vol. abs/1508.07909, , 2016.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
2017.

[12] Qiongkai Xu, Juyan Zhang, Lizhen Qu, Lexing Xie, and
Richard Nock. D-page: Diverse paraphrase generation.
CoRR, Vol. abs/1808.04364, , 2018.

― 666 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

