
Informative Sections and Relevant Words
for the Generation of NLP Article Abstracts

Tianjiao Li and Yves Lepage
IPS, Waseda University

ltj1994@fuji.waseda.jp, yves.lepage@waseda.jp

Abstract
In this paper, we show that, in the field of NLP, abstracts
of articles make only use of the text found inside the arti-
cle. We introduce a multi-channel summarization method
which makes use of only some sections to generate a
summary. We show that the introduction and the con-
clusion are the most useful sections to generate accurate
abstracts. We also show that reducing the content to in-
formative N-grams suffices to retain the necessary infor-
mation to generate accurate abstracts.

1 Introduction
There are two approaches to automatic summarization:
extractive and abstractive [2]. Extractive summarization
only copies words and sentences from the source text. It
cannot create new words. Summarization techniques on
scientific articles are mostly extractive approaches. The
most advanced techniques use extra information such as
citation summaries or citation networks. In contrast, ab-
stractive summarization reads the whole source text and
generates a summary which may contain words not found
in the source text [6]. If machine learning techniques are
used, these new words are picked from the vocabulary
learned during the training phase.

Original extractive methods usually calculate a score
to reflect how important a word or a sentence is. They
use words and sentences which have highest score in
their output [8]. However, sentences selected in this way
may be not relevant in content. They may also not be in
the right order in structure. Work has been done to try
to solve this problem, including work on rhetorical sta-
tus and structure [7, 13], and citation networks [9, 10].
Such previous work concluded that, in order to improve
the performance of extractive summarization, extra infor-
mation such as rhetorical status or citation networks is
needed.

On the contrary to such previous studies, we show
that, to generate a summary for a scientific article, all
we need is the content of the article itself and that no
extra information is needed. Therefore, we choose ab-
stractive method to generate summaries. Abstractive
methods are usually based on recurrent neural networks
(RNN) [1, 12]. RNNs are a kind of neural networks

equipped with a memory about the history of the input.
They can generate words based on this history. Such
NNs are suitable for the generation of abstractive sum-
maries. OpenNMT-py [4] is an open-source tool origi-
nally designed for neural machine translation. It has been
extended to text summarization and other tasks. It uses
RNNs as its basic framework. However, being a mock-
up tool, it has a heavy practical restriction on the length
of the input. We confirmed this during our experimen-
tal manipulations. This practical constraint is a challenge
which goes into the direction of our claim that only the
content of a scientific article is sufficient for the genera-
tion of its abstract. It goes even further in constraining us
to propose some light pre-processing to make the article
content even shorter, without having an impact on the re-
sult of summarization. In other words, the pre-processing
to shorten the content of the article should keep the infor-
mative content that may appear in the summary.

To train the neural network, a reasonable amount of
data is necessary. But there is no such data set available
on scientific articles. So we built one by ourselves.

In this paper, we introduce a multi-channel abstractive
approach to generate summaries of scientific articles only
using their sections. We show that to generate a summary,
all we need is the article itself. Moreover, we hope we can
generate abstract-like summaries, so that once an article
is written, its abstract can be generated automatically.

2 Background

2.1 Recurrent Neural Network
Recurrent neural networks (RNN) use hidden units to
store the information from the current input and previous
hidden units, so that they have a memory of inputs of all
the time. It is suitable to be used on summary generation.
One of their drawbacks is that their performance drop on
longer inputs [3].

In the encoder-decoder model, the encoder part reads
the source sentence token by token and uses hidden states
to store the information. The final output of the encoder
part is passed to the decoder part which generates the tar-
get sentence token by token. All tokens previously gen-
erated influence the generation of the next token. As a
result of an output token being conditioned on the source

― 1281 ―

言語処理学会 第25回年次大会 発表論文集 (2019年3月)

Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

Figure 1: Number of times a token in an article appears
in the abstract

and the previously generated target part, sentences gener-
ated in this way are more grammatical and more fluent.

2.2 ACL-ARC data set
Collections of articles built for extractive summarization
are too small in size for training a neural network. There-
fore, we built a data set using the ACL-ARC corpus1.
ACL-ARC is a corpus of scholarly publications about
computational linguistics. It consists of 22,878 articles.
We extracted the text from each article and broke it down
into four parts: abstract, introduction, conclusion and
body (i.e., the rest). So far, we have already extracted
texts from 15,000 articles.

2.3 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evalu-
ation) [5] is a metric to evaluate the performance of sum-
marization. The scores range from 0 to 100. The higher
the score, the better the performance. Rouge computes
a recall, a precision and an F-score against a gold stan-
dard. The unit to compute the scores may be unigrams
(ROUGE-1) or bigrams (ROUGE-2). The ROUGE-L score
uses the length of the longest common subsequence as
the numerator to calculate the recall and precision scores.

3 Which sections are informative
for an abstract?

We use the open-source tool OpenNMT-py for our ex-
periments. The basic mechanism of OpenNMT-py is at-
tention based recurrent neural network. As mentioned
above, the performance of RNNs drops when the input

1http://acl-arc.comp.nus.edu.sg/

Figure 2: Multi-channel method

length increases. In practice, OpenNMT-py does not al-
low to use the whole body of an article as an input. It
limits the input to 400 tokens. To remedy this constraint,
we propose to use only some sections of an article. It is
like a filter through which only some piece of information
is passed. We call each piece of information a channel.
In this way a whole article will be divided into several
channels.

The next question is which parts of an article, i.e.,
which channel, is most effective for our goal of sum-
marizing an article and getting an abstract-like summary.
Usually, an abstract is structured in the following way:
it introduces the background of a topic, states the exist-
ing problems, proposes a new approach, mentions the
main results of experiments and stresses the improve-
ments made.

A natural hypothesis is that all these points are de-
scribed in details mainly in the introduction and the con-
clusion sections. To confirm this hypothesis, we perform
the following experiment on our ACL-ARC data set: for
a given article, we replace each token in the paper, from
the first token of the introduction to the last token of the
conclusion, with the number of times it appears in the
abstract. We average all articles by scaling them to the
same length and plot the picture obtained in Figure 1. In
this figure, the pixels are the averaged positions of tokens.
The darker they are, the higher number of times they ap-
pear in the abstract. It is obvious that the top and bottom
areas of Figure 1, which correspond to the introduction
and conclusion sections, are much darker.

However, the body of the article is longer than the in-
troduction and the conclusion. It may be the case that the
words in the abstract also come from the body of the ar-
ticle. We calculate the ROUGE scores of different parts
of articles using their abstracts as gold standards. These
scores are shown in Table 1a. Introduction, body and con-
clusion all exhibit a high ROUGE-1 recall score, with the
body part getting a higher score. It means that most of
the words in an abstract are actually found in the body of
the article. In other words, the abstract is already almost
entirely in the body of an article.

4 Which words are relevant for an
abstract?

Compared to recall scores, ROUGE-1 precision scores are
much lower. This means that all parts contain more words
which are not in the abstract, than which are. These
words are irrelevant to generate the abstract. Neural net-
works will learn which words are more important and

― 1282 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

Table 1: ROUGE scores of different sections of scientific papers and summaries generated from them. (a) and (b) are
for the input sections, raw or after pre-processing. (c) is for generated summaries. I, C and B stand for introduction,
conclusion and body, respectively. Boldfaced numbers show best ROUGE scores for each unit (unigram (ROUGE-1),
bigram (ROUGE-2) or longest common subsequence (ROUGE-L)) and each measure (recall (R), precision (P) and F-score
(F)).

(a) Raw sections.

of tokens ROUGE-1 ROUGE-2 ROUGE-L
avg. ± std.dev. R P F R P F R P F

I 471 ± 233 74.38 19.77 29.67 31.52 8.04 12.22 56.59 15.03 22.54
B 2656 ± 1363 82.43 6.22 10.43 34.36 2.17 3.81 67.18 4.96 8.32
C 232 ± 164 56.96 34.04 38.71 19.46 12.14 13.59 43.55 26.52 29.90

(b) Sections after pre-processing. Stop words and punctuation marks have been removed from introduction and conclu-
sion. (I′, C′) Body is reduced to the more informative N-grams only. (B′′)

of tokens ROUGE-1 ROUGE-2 ROUGE-L
avg. ± std.dev. R P F R P F R P F

I′ 295 ± 00146 65.26 17.12 25.83 26.24 6.79 10.29 40.74 10.66 16.07
B′′ 31 ± 24 10.20 38.88 14.95 1.43 5.40 2.08 7.86 31.37 11.62
C′ 139 ± 99 46.52 28.97 32.45 16.07 10.71 11.72 28.12 18.15 20.03

(c) Summaries generated from different combinations of sections after pre-processing.

ROUGE-1 ROUGE-2 ROUGE-L
R P F R P F R P F

Summary of I′ 40.38 44.77 40.50 10.82 12.17 10.84 31.22 35.10 31.46
Summary of B′′ 28.59 31.03 28.56 5.43 5.87 5.42 22.72 24.87 22.79
Summary of C′ 39.22 40.10 38.22 9.80 10.03 9.55 31.00 32.01 30.34
Summary of I′+B′′ 41.56 43.98 41.10 11.43 12.06 11.27 32.25 34.53 32.05
Summary of B′′+C′ 38.76 41.37 38.43 9.92 10.53 9.78 30.55 32.92 30.39
Summary of I′+C′ 43.44 45.83 42.83 12.73 13.37 12.51 33.54 35.83 33.26
Summary of I′+B′′+C′ 43.51 45.33 42.71 12.72 13.29 12.48 33.58 35.48 33.16

which are irrelevant given enough training data. How-
ever, experimentally, RNNs perform poorly on longer in-
puts and practically OpenNMT-py imposes a limit of 400
tokens in length. Table 1a shows that the average length
of each part is well over this limit. We propose a pre-
processing to reduce length.

For the introduction and conclusion channels, we re-
move all stop words and punctuation marks. These to-
kens are not significant as they can be reproduced by the
RNN model because they are remembered from the ab-
stracts themselves. Table 1b shows that, after removing
stop words and punctuation marks, the ROUGE scores of
the introduction and the conclusion channels decrease.
This means that information is now missing.

The body channel scores in Table 1a are taken for all
the text which extends from end of the introduction to the
beginning of the conclusion. The ROUGE-1 recall score is
higher in average than for the introduction of the conclu-
sion. This means that these sections contain more words
which appear in the abstract. To solve the length problem

(average of 2,656 tokens), simply removing stop words
and punctuation marks is not enough. Instead, we per-
form keyword extraction using the Rake tool2 [11]. The
length of the entire body is reduced to a very small num-
ber of tokens (average 31). ROUGE recall scores decrease
but precision scores increase, which was expected.

After the pre-processing presented above, an article is
reduced to three channels: introduction, body and con-
clusion. Their lengths are acceptable for OpenNMT-py,
even when concatenated. If too long, OpenNMT-py uses
only the first 400 tokens.

We randomly divide the ACL-ARC articles into a train-
ing set (14,000 articles), a validation set (500) and a test
set (500). Different combinations of the three channels
are tested. The results are shown in Table 1c. The length
of the summaries generated by different combinations of
channels range from 110 tokens to 120 tokens, which
matches well the average length of the golden standard
average length (113 tokens).

2https://github.com/zelandiya/RAKE-tutorial

― 1283 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

5 Analysis
Among summaries generated using only one channel, the
introduction channel has the highest ROUGE score. It is
easy to understand from Table 1b that this channel has
the highest recall score. This means that it has the largest
number of important words, and that it is the most infor-
mative one. For summaries generated using a combina-
tion of two channels, introduction and conclusion (I′+C′)
is the most informative one. Table 1b also shows that
the length of I′+B′′+C′is slightly longer than 400 in av-
erage. OpenNMT-py will drop the last tokens after 400.
Compared to I′+C′, in I′+B′′+C′, some tokens in conclu-
sion will be replaced by tokens from the body, but body
is not as informative as conclusion. This explains why
summaries generated using I′+B′′+C′end up with a lower
ROUGE than summaries generated only from I′+C′.

6 Conclusion
In this paper, we showed that, at least on the collection of
papers from our data set, ACL-ARC, most of the words in
the abstract appear in the article. The conclusion is that,
to generate the abstract of a scientific paper automatically,
the task consists of removing irrelevant words.

In order to solve the input length problem for a tool
like OpenNMT-py, we proposed a multi-channel method,
where the channels are the introduction, the body and the
conclusion of an article, on which a light pre-processing
has been performed.

We performed experiments on a set of articles from
the natural language processing domain: ACL-ARC. We
showed that generating an abstract from the introduction
and the conclusion only is better than relying on the entire
article. The introduction and the conclusion are the most
informative parts of the article.

7 Acknowledgement
This work was supported by JSPS KAKENHI Grant
Number JP18K11446.

References
[1] Sumit Chopra, Michael Auli, and Alexander M

Rush. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 93–98,
2016.

[2] Dipanjan Das and André F. T. Martins. A survey
on automatic text summarization. Literature Survey
for the Language and Statistics II course at CMU,
4:192–195, 2007.

[3] Trieu H. Trinh, Andrew M. Dai, Lng Thng, and
Quoc V. Le. Learning longer-term dependencies in
RNNs with auxiliary losses. In International Con-
ference in Machine Learning, February 2018.

[4] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL, 2017. doi: 10.18653/v1/P17-4012.

[5] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In Stan Szpakowicz
Marie-Francine Moens, editor, Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain, July 2004.
Association for Computational Linguistics.

[6] Elena Lloret and Manuel Palomar. Text summariza-
tion in progress: a literature overview. Artificial in-
telligence review, 37(1):1–41, January 2012.

[7] Kenji Ono, Kazuo Sumita, and Seiji Miike. Abstract
generation based on rhetorical structure extraction.
In Proceedings of the 15th conference on Computa-
tional linguistics-Volume 1, pages 344–348. Asso-
ciation for Computational Linguistics, 1994.

[8] H P. Luhn. The automatic creation of literature ab-
stracts. IBM Journal of Research and Development,
2(2):157–165, 05 1958.

[9] Vahed Qazvinian and Dragomir R Radev. Scientific
paper summarization using citation summary net-
works. In Proceedings of the 22nd International
Conference on Computational Linguistics-Volume
1, pages 689–696. Association for Computational
Linguistics, 2008.

[10] Vahed Qazvinian, Dragomir R. Radev, Saif M.
Mohammad, Bonnie Dorr, David Zajic, Michael
Whidby, and Taesun Moon. Generating extractive
summaries of scientific paradigms. Journal of Arti-
ficial Intelligence Research, 46(1):165–201, 2013.

[11] S. Rose, D. Engel, N. Cramer, and W. Cowley. Text
Mining: Theory and Applications, chapter Auto-
matic Keyword Extraction from Individual Docu-
ments, pages 1–20. John Wiley & Sons., 2010.

[12] Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. Generating text with recurrent neural networks.
In Proceedings of the 28th International Confer-
ence on Machine Learning (ICML-11), pages 1017–
1024, 2011.

[13] Simone Teufel and Marc Moens. Summarizing
scientific articles - experiments with relevance and
rhetorical status. Computational Liguistics, 28(4):
409–446, 2002.

― 1284 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

