言語処理学会 第2回 年次大会 発表論文集（1996年3月）

談話構造を利用した漸次的発話生成

堂坂 浩二　島津 明

NTT基礎研究所

1 はじめに

対話は実時間の活動であり、時間制限によって制約される。さらに、対話方者に制限された推論能力しかもない[9]。時間と推論能力に関する制限のために、対話者は発話を漸次的に生成させるを得ない。漸次的発話生成とは、「話者が、発話すべき内容を考えた後、時間的に発話を生成し、発話を行いながら、次に発話すべき内容を決定していく」ことをいう。

漸次的発話生成戦略のすなわち、発話は時間制限を守ることができず、突き止められる前に他の対話方者に発話権を奪われなくて済む。さらに、この戦略に基づく発話は、推論能力に限界のある聴者にとって理解が容易である。

本稿では、タスク指向型対話における漸次的発話生成のモデルを示す。このモデルは、与えられた問題を解きながら、同時に問題の解決を提案するために発話を生成する。このとき、発話の間に一定の長さ以上のポーズを置かないという時間制限を満たす。

このモデルは、一連の発話を一塊の発話として生成する。本稿では、タスク指向型対話のコニーハに現れる発話構造の分析結果を示し、頻繁に現れる発話構造が漸次的発話生成に貢献することを確認する。モデルは、いくつかの発話構造を利用することによって、発話を漸次的に生成する。また、発話の漸次的生成戦略は、発話内容が完全に決定することが不必要であるため、不適切な発話を生成することもできる。

発話の適切さを保証するために、言語運用制約と文脈モデルを用いる。モデルの有用性は、発話シミュレーション実験によって確認されている。

2 関連研究

Leveltは、認知心理学的な見地から発話内容決定過程と発話生成過程が同時に進行することによって、発話が生成されることを示している[5]。しかし、認知的モデルは、発話生成の計算機シミュレーションや対話システム構築という目的のためには不十分なものである。本稿では、漸次的発話生成の計算モデルを示す。

POPELは、漸次的発話生成の実現システムである[7]。POPELは、POPEL-WHATとPOPEL-HOWの2つのモジュールから構成される。POPEL-WHATは発話内容を決定し、段階的にPOPEL-HOWに送る。それを受けて、POPEL-HOWは、段階的に文を生成する。しかし、そこでは、発話内容を決定しながら、発話構造に基づいて一連の発話を漸次的に生成するための方策が示されていない。第3節で示すように、実時間対話では、話者は伝達すべき内容を複数の発話を分配することにより漸次的に発話を生成し、しかもそれらの発話を全体で一つの発話を構成することが頻繁に起こる。本稿で示すモデルは、発話構造に基づいて漸次的に発話を生成する。

言い回しや言い直しを説明するために、時間制限を考慮した発話生成のアーキテクチャの構想が示されている[1]。しかし、そこでは、具体的な計算モデルは示されていない。また、発話構造も考慮されていない。

3 談話構造分析

タスク指向型対話のコンコースの中に現れる発話構造を分析した。話者が発話によって情報を伝達しようとするとき、伝達すべき情報全体を一塊として発話を生成するのではなく、情報を複数の塊に分配して、その塊ごとに発話を生成するものと考えられる。そのような情報を情報単位と呼び、一つの情報単位を伝達する発話を発話単位と呼ぶ。発話単位は発話の最小構成要素である。

話者は各発話単位を関係付け、発話単位の列を一つの発話を生成する。そういった発話単位の間の関係を発話関係といい、発話構造は、発話関係によって互いに関係付けられた発話単位の階層構造である。

対話コーパスは次のように会話実験によって収集した。実験では、90人の発話者が参加した。各会話において、二人の発話者（NとE)は、電話で会話することにより、「Nがある場合から別の場所へ行く」という問題の解を解くために十分な知識をもっており、Nはもつたくも選んで、80対話が収集され、書き起こされている。15対話を分析のために選んだ。

3.1 発話単位の分析

発話単位は、必ずしも文脈の明確な帰属を示す発話単位に対応するわけではないが、第一近似として発話単位は次ののように分析できると仮定した。

・節は発話単位である。
・間投詞表現は発話単位である。
・つながり語は発話単位の区切りである。
次の対話(d1) は書き起こされた対話の一部である。
“/” は発話単位の区切りを示す。

対話(d1)
E: (1) 愛甲石田までですね / (2) 行って / <はい>
(3) そこでバスを呼びますか / (4) 森の里青山行きというバスがあるので / <はい>
(5) それ乗ってもらって / <はい>...

15 対話における発話単位の統語範囲の頻度を表1に示す。表中で、NP と PP は名詞句と後置詞句を意味する。節、NP、PP、または、NP と PP の列として実現された発話単位について、一つの発話単位の中に現れる名詞句数の平均は 1.01 であり、分散は 0.28 であった。3.2 談話関係の分析

頻繁に現れた談話関係として、Elaboration, Circumstance, Motivation が現れた発話生成に果たす役割を踏じる。Elaboration は、対話アプローチの行為、対象の内容の一部を記述する発話単位と、さらに詳細な内容を記述する発話単位との間の関係である。本研究では、対話(d1) の (3) と (4) との間の関係である。この関係によって、話者は記述内容の完成を決定する前に発話の開始をできる。Circumstance は、対話の行為や状態を記述する発話単位と、行為や状態の背景を記述する発話単位との間の関係である。特に、行為の提案の前後においての提案の背景として記述される場合が、41 例 (88%) 見られた。その典型例は、(4) と (5) の間の関係であり、(4) で「バスが存在する」という前提が記述されている。行為の前提を記述する際には、行為の構成要素を言及することが普通である。したがって、この関係を用いることによって、話者は行為的内容を 2 以上以上の発話単位に分配することができ、行為の前提条件を記述するときに行為全体の内容を決定しておく必要なし。Motivation は行為を提案する発話単位と、その行為の採用を許す機会を提案する発話単位との関の関係である。典型例は、(4) と (5) の間の関係であり、行為の前提が成立していることをまず言及してから、行為の提案を行っている。このとき、Circumstance と Motivation の 2 つの関係が同時に成立し、行為の内容を 2 以上の発話単位に分配できる。

4 時間制限下における発話の生成モデル

モデルの概要を図2に示す。モデルは、時間制限、発話プランニング、発話制御、音声合成、時間管理を行うモジュールから構成される。問題解決モジュールは、与えられた問題を解くための発話プランニングを立案する。発話プランニングモジュールは、発話プランを立案する。発話プランは、発話プランを対話相手に提案するための
談話構造と個々の発話単位の内容を規定する。発話制御モジュールは、発話プランに基づいて、語彙情報を付加した言語表現を一定のタイミングで音声合成モジュールに送る。本稿では、言語表現の合成と発話情報の付加に関しては触れない。音声合成モジュールは音声として発話を発する。時間管理モジュールは、音声合成モジュールを走査し、ポーズが一定の制限時間を超えたとき、発話プランニング及び発話制御モジュールにそのことを知らせる。

4.1 時間制限の遵守

時間制限を守りながら新たな発話を生じるために、以下の手順が用いる。すべてのモジュールは並列に動作する。問題解決発話プランニングは、階層的プランニング手法 [8, Chap.12]に基づいて階層的に進める。ドメインプランは、階層的に詳細化される。発話プランは部分的に決定されたドメインプランに基づいて立案される。ポーズが制限時間を超えたときでも、その時点で立案されている発話プランに基づいて、発話は実行される。発話を実行している間にもドメインプランと発話プランの成立は進まされる。ドメインプランがさらに具体化されたときには、発話プランを再立案する。制限時間内に案外なる発話プランも立案されていないと、発話制御モジュールは休みを発生する。

4.2 発話の適切さの保証

生成される発話が言語として適切であることを保証するために、音語運用制約と文脈モデルを用いる。ここで用いる音語運用制約は、以下のものである。

(c1) 注視対象を再帰的化する。

(c2) 伝達済みの情報は繰り返さない。

(c3) 注視状態に対して適切な発話を進行する。

文脈モデルは、伝達済みの情報を管理し、注視状態 [3]を追跡する。例えば、場所 S が注視されている状況で、「場所 S から路線 L で場所 D まで行く」という発話を移動行為を提案したとする。この発話が実行された時点で、注視されているドメインの対象は S から D に移行する。また、文脈に導入済みの情報が重複化されるとき、その対象は注視される。発話の注視状態に対する適切さに関しては、例えば、「場所 S から路線 L で場所 D まで行く」という発話は、場所 S が注視されているなら適切であると考える。

5 問題解決

ここでは、問題解決モジュールの細部には立ち入らない。図 3 に示す路線図において、武蔵野研究センタから厚木研究センタまで最短時間で行くという問題に例をとると、まず、「武蔵野研究センタからバスで最寄駅まで行って、そこから厚木研究センタの最寄駅まで行って、そこからバスで厚木研究センタまで行く」という抽象的なドメインプランが立案される。さらに、「武蔵野研究センタから吉祥寺まで行って、そこから井の頭線で下北沢まで行って、...」というより具体的なドメインプランが立案される。

6 発話プランニング

発話プランとは情報伝達行為の列である。情報伝達行為として、「ドメインプランを提案する」、「ドメインプランを構成するドメイン行為を提案する」、「ドメイン行為の格要素を伝達する」、「言語表現を発話する」といった情報伝達行為をプランニング技術 [8, Chap.11]におけるオペレータとして定義する。また、第 3.2 節で述べた発話関係を利用した「行為の構成要素の存在に言及してからその行為を提案する」といった情報伝達行為も定義する [2]。

ドメインプランが与えられたとき、最初に立案される発話プランは、そのドメインプランを提案する」という一つの情報伝達行為だけを成すプランである。この発話プランは、階層的プランニングの手法を用いて、ドメインプランを構成する各ドメイン行為を必要に提案するという発話プランに展開される。続いて、ドメイン行為の格要素のそれぞれとドメイン行為のタイプを必要に伝達するという発話プランが立案される。ここでも情報単位が分解された時点で、発話プランに含まれる各情報伝達行為に対応する言語表現を合成し、その言語表現を発話するという情報伝達行為を提案し、発話制御モジュールに送る。この手法は、第 3.1 節で述べた発話単位の分析を反映している。

以上の手法によって、ドメインプランが最終的に決定する前に、ドメインプランの確定した部分から最小の発話単位を使って発話し、発話しながらドメインプランの内容を具体化することができる。結果として、時間制限を守りながら新たな発話を生成することが可能となる [2]。

発話の適切さを保証するために、音語運用制約を用いる。制約 (c1), (c3) は、言語表現の合成を行うときに適
用する。具体的には、(c1) に従って、名詞句の代名詞化、(c3) に従って、名詞句の係辞化を行う。制約 (c2) は、メインタブランクの具体化に伴って発話プランを再立案し、再立案された発話プランに基づいて発話を継続するときに適用する。具体的な適用例は、第 7 章で示す。

7 発話シミュレーション実験

モデルに基づいて実験システムを作成し、発話シミュレーション実験を行った。目的は、モデルの有効性を検証することである。実験は、言語運用制約を利用した場合と利用しなかった場合に分けて行った。いずれの場合も実験システムは、時間制限を守りながら発話を生成することができた。

次の発話例は、言語運用制約を利用した場合に実験システムが生成した発話を書き起こしたものである。

(発話例)

(e1) 武蔵野に近いところに は、バスで素晴らしさが 春の訪れを占めています。
(e2) すぐ近くに、吉祥寺駅まで 出てください。
(e3) それから 彼の頭線に乗って、下北沢まで行ってください。
(e4) そこで、小田急線で、愛甲石田駅にて降りてください。
(e5) それから、バスに乗って、森の里青山行きのバスが ありますので、そのまま乗って、通信研究所前まで 出ます。

上の発話例の発話 (e1) の時点で問題解決に至る。発話 (e1) は、武蔵野と吉祥寺の間を連続的に発話することを示している。発話 (e2) は、「武蔵野に近いところに は、バスでいきましょう」を示している。発話 (e3) は、「それから、彼の頭線に乗って、下北沢まで行ってください。」を示している。発話 (e4) は、「そこで、小田急線で、愛甲石田駅にて降りてください。」を示している。発話 (e5) は、「それから、バスに乗って、森の里青山行きのバスが ありますので、そのまま乗って、通信研究所前まで 出ます。」を示している。

8 おわりに

本稿では、現実の会話発生モデルを提案した。モデルは、時間制限の下で、発話内容を考えながら同時に発話することができる。さらに、対話をコーパスに現れた話術構造に応じて、発話発生シミュレーションモデルは、一連の発話を一つの発話として生成する。話術の組み合わせは、言語運用制約によって保持される。モデルの有効性は、発話シミュレーション実験によって確認されている。謝辞：本稿は、御指導を通じて、井上健一、小野田喜一、木村忠之、前田和男に深く感謝いたします。