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Abstract
We propose a novel approach for improving machine translit-
eration performance: validating hypothesis translitera-
tions derived from multiple transliteration engines. Through
experiments, we have shown that multiple transliteration
engines and hypothesis transliterations improve machine
transliteration performance.

1 Introduction
Machine transliteration has received significant attention
as a tool for supporting machine translation (MT) [1, 2]
and cross-language information retrieval (CLIR) [3]. A
variety of different paradigms for machine transliteration
have been developed over the years: a grapheme-based
transliteration model (GTM) [4, 5, 6, 7], a phoneme-based
transliteration model (PTM) [1, 4], a hybrid translitera-
tion model (HTM) [2, 8], and a correspondence-based
transliteration model (CTM) [9]. These models are clas-
sified in terms of the information sources used for translit-
eration or the units that are transliterated. Because each
transliteration model depends on a particular information
source, each one produces transliterations with errors. More-
over, different transliteration models usually produce dif-
ferent errors and different transliterations. Based on this
observation, it seems to be possible to improve transliter-
ation performance by combining the various translitera-
tion models into one machine transliteration system that
combines the merits of the individual ones and suffers
from few of their demerits. In this paper, we propose
a novel approach for improving machine transliteration
performance: validating hypothesis transliterations de-
rived from multiple transliteration engines.

This paper is organized as follows. We describe a
framework for multi-engine based machine translitera-
tion in Section 2, and present our experiments in Section
3. Finally, we conclude the paper in Section 4.

2 A Framework for Multi-Engine Based
Machine Transliteration

What we concern here is how well we can construct mul-
tiple transliteration engines, at least one of which can
generate correct hypothesis transliterations and how well
we can assign reliable confidence scores to each hypoth-
esis transliteration, which determines whether we can ef-
fectively select correct hypothesis transliterations.

2.1 Generating Hypothesis Transliterations
We use multiple transliteration engines based on GTM,
PTM, HTM, and CTM to produce transliteration hypothe-
ses. GTM, PTM, and CTM can generally function alone
as transliteration engines, while HTM depends on other
transliteration models to estimate its parameters. There-
fore, we call a transliteration engine based on GTM, PTM,
or CTM a “single-model engine” and one based on HTM
a “hybrid-model engine”. We use seven transliteration
engines. Three are single-model engines corresponding
to GTM, PTM, and CTM, respectively. Four are hybrid-
model engines: three of them correspond to HTM using
two of GTM, PTM, and CTM and the other is based on
HTM using all three.

Let SW be a source word, PSW be the pronunciation
of SW , TSW be a target word corresponding to SW , and
CSW be a correspondence between SW and PSW . PSW

and TSW can be segmented into a series of sub-strings,
each of which corresponds to a source grapheme. Then,
we can write SW = sn

1 , PSW = pn
1 , TSW = tn1 , and

CSW = cn
1 , where si, pi, ti, and ci = (si, pi) represent

the ith source grapheme, source phonemes correspond-
ing to si, target graphemes corresponding to si and pi,
and the correspondence between si and pi, respectively.
With this definition, GTM (SW → TSW ), PTM (SW →
PSW and PSW → TSW ), and CTM (SW → PSW and
CSW → TSW ) can be represented as Eqs. (1), (2), and
(3), respectively. Given the assumption that each translit-
eration model depends on the size of the context, k, Eqs.
(1), (2), and (3) can be simplified into a series of products.

PrG = PrG(TSW |SW ) = Pr(tn1 |sn
1 ) (1)

≈
∏

i

Pr(ti|ti−1
i−k, si+k

i−k)

PrP = PrP(TSW |SW ) (2)
= Pr(pn

1 |sn
1 )× Pr(tn1 |pn

1 )

≈
∏

i

Pr(pi|pi−1
i−k, si+k

i−k)× Pr(ti|ti−1
i−k, pi+k

i−k)

PrC = PrC(TSW |SW ) (3)
= Pr(pn

1 |sn
1 )× Pr(tn1 |cn

1 )

≈
∏

i

Pr(pi|pi−1
i−k, si+k

i−k)× Pr(ti|ti−1
i−k, ci+k

i−k)

To estimate the probabilities in Eqs. (1), (2), and (3),
we use the maximum entropy model [10]. Our basic phi-
losophy in designing feature functions for the maximum
entropy model is that the context information collocated
with the unit of interest is important. Based on this phi-
losophy, we designed feature functions with all possible



combinations of (si+k
i−k, pi+k

i−k, ci+k
i−k, and ti−1

i−k). Generally,
a conditional maximum entropy model is an exponential
log-linear model that gives the conditional probability of
event ev =< te, he >, as described in Eq. (4), where λi

is a parameter to be estimated [10].

Pr(te|he) =
exp(

∑
i λifi(he, te))∑

te exp(
∑

i λifi(he, te))
(4)

With Eq. (4) and feature functions, conditional prob-
abilities in Eqs. (1), (2), and (3) can be estimated like
Pr(ti|ti−1

i−k, ci+k
i−k) = Pr(te|he), because we can repre-

sent target events (te) and history events (he) as ti and
tuples (ti−1

i−k, ci+k
i−k), respectively. In the same way, we

can represent Pr(ti|ti−1
i−k, si+k

i−k), Pr(ti|ti−1
i−k, pi+k

i−k), and
Pr(pi|pi−1

i−k, si+k
i−k) as Pr(te|he) with their corresponding

target events and history events.

PrH(G+P)(TSW |SW ) (5)
= α× PrP + (1− α)× PrG

PrH(G+C)(TSW |SW ) (6)
= β × PrC + (1− β)× PrG

PrH(P+C)(TSW |SW ) (7)
= γ × PrC + (1− γ)× PrP

PrH(G+P+C)(TSW |SW ) (8)
= δ1 × PrG + δ2 × PrP + δ3 × PrC

Using the definition of HTM [2, 8], we can represent
four hybrid-model engines in a straightforward manner
— Eqs. (5), (6), (7), and (8), where δ1 + δ2 + δ3 = 1
and 0 < α, β, γ, δ1, δ2, δ3 < 1. Note that H(G + P) can
be interpreted as HTM based on GTM (G) and PTM (P),
and other notations can be interpreted in the same way.
We used the “maximum entropy modeling toolkit” [11]
to estimate Eqs. (1)–(8).

For each transliteration engine, we produce n-best
transliteration hypotheses. We then make a set of translit-
eration hypotheses comprising the n-best transliteration
hypotheses produced by the seven transliteration engines.

2.2 Validating Hypothesis Transliterations
We propose a validation model for hypothesis translitera-
tions and letting it choose which one is a correct hypothe-
sis transliteration. LetHT be a set of hypothesis translit-
erations (or transliteration candidates) produced by the
seven transliteration engines, hti be the ith hypothesis
transliteration in HT , and s be the source language word
resulting in HT . Then SVM(X )(s, hti), our validation
model, can be represented as Eq. (9). SVM(X )(s, hti)
is composed of two models, transliteration engine-based
model (STM) and Web-based model (SWM(X )).

SVM(X )(s, hti) = STM(s, hti)× SWM(X )(s, hti) (9)

2.2.1 Transliteration Engine-based Model

STM(s, hti) is based on the original rank assigned by
each transliteration engine. For a given source word (s),
each transliteration engine generates hypothesis translit-
erations and assigns their ranks with the probability de-
scribed in Eqs. (1)–(3), and (5)–(8). The underlying as-
sumption is that the rank of the correct transliterations
tends to be higher, on average, than the wrong ones. Let
τ be a ranked list of hypothesis transliterations produced
by certain transliteration engine, |τ | be the number of hy-
pothesis transliterations in τ , R be a set of the ranked lists
(|R| = 7 in this paper), and rank(τ, i) be a rank of item
(s, hti) (rank(τ, i) = 1 indicates Top-1 of τ ). If (s, hti)
is not in the τ , we assign rank(τ, i) = |τ |+ 1. Then we
can represent STM (Eq. (10)) with a rank normalization
method [12].

STM(s, hti) =
1
|R|

∑

τ∈R

(1− rank(τ, i)− 1
|τ | ) (10)

2.2.2 Web-Based Model

Korean and Japanese Web pages are usually composed of
rich texts in a mixture of Korean or Japanese (main lan-
guage) and English (auxiliary language). Let s and t be
a source language word and a target language word, re-
spectively. We observed that s and t tend to be near each
other in the text of Korean or Japanese Web pages when
the authors of the Web pages describe s as translation of
t, or vice versa. We retrieved such Web pages for Web-
based confidence scores.

There have been several studies of translation valida-
tion or transliteration validation [2, 13, 14, 15] based on
Web data. Generally they have relied on Web frequency
(the number of Web pages retrieved by a Web search
engine). The chi-square (χ2) test and relative Web fre-
quency derived from “bilingual keyword search (BKS)”
[14, 15] or “monolingual keyword search (MKS)” [2,
13] have been used in their validation. BKS retrieves
Web pages by using a query composed of two keywords,
s and t, while MKS retrieves Web pages by using a query
composed only of t. However, Web pages retrieved by
MKS tend to show whether t is used in target language
texts rather than whether t is a translation of s. BKS fre-
quently retrieves Web pages where s and t have little re-
lation to each other because it does not consider distance
between s and t in the Web pages. To address these prob-
lems, we use “bilingual phrasal search (BPS)”, where a
phrase composed of s and t is used as a query for a search
engine.

SWM(X )(s, hti) =
1 + WFX (s, hti)

|HT |+ ∑
htk∈HT WFX (s, htk)

(11)

Let WFX (s, hti) be the Web frequency retrieved by
X ∈ {MKS, BKS, BPS}. Then, SWM(X ) can be rep-
resented as Eq. (11), which represents the relative Web
frequency. To avoid zero value in SWM(X ), we use the
Laplace smoothing method [16].



EKSet EJSet
Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

GTM(G) 56.8 75.5 80.3 84.4 51.6 71.8 77.2 80.9
PTM(P) 49.6 66.5 72.0 77.3 47.6 67.9 73.2 77.9
CTM(C) 60.8 78.8 83.1 86.6 58.2 79.0 84.7 89.7

HTM(G+P) 60.6 78.2 83.0 87.5 56.5 76.3 82.4 87.9
HTM(G+C) 62.1 80.2 84.9 88.9 59.0 80.4 87.3 94.1
HTM(P+C) 61.3 77.2 81.5 85.2 58.9 78.6 84.5 89.6

HTM(G+P+C) 62.1 79.7 84.1 88.4 59.3 79.6 85.7 91.1
STM 72.6 80.3 84.9 88.8 68.8 79.6 85.7 91.6

SWM

SWM(MKS) 25.1 46.2 59.4 77.9 36.4 61.3 73.7 88.3
SWM(BKS) 66.8 85.2 89.1 91.4 69.2 87.1 91.7 95.0
SWM(BPS) 84.8 91.0 91.4 91.7 79.3 92.4 93.9 95.1

SVM

STM × SWM(MKS) 31.3 54.0 67.3 83.0 43.6 68.9 80.3 91.0
STM × SWM(BKS) 71.4 87.4 90.1 91.6 72.7 89.1 92.9 95.4
STM × SWM(BPS) 85.3 91.7 91.9 92.0 80.5 93.4 94.5 95.2

Table 1: Summary of Results (%)

3 Evaluation
Our experiments were done with English-to-Korean and
English-to-Japanese transliteration. The test set for the
English-to-Korean transliteration (EKSet) [17] consisted
of 7,172 English-Korean pairs. The test set for the English-
to-Japanese transliteration (EJSet), which consisted of English-
katakana pairs from EDICT1, consisted of 10,417 pairs.
EJSet contained one or more correct transliterations for
each English word, for example, <micro, ‘ma-i-ku-ro’>,
and <micro, ‘mi-ku-ro’>. The average number of Japanese
transliterations for an English word was 1.15. EKSet and
EJSet covered proper names, technical terms, and gen-
eral terms. Evaluation was done in terms of word accu-
racy (WA) in Eq. (12), where TRLs means translitera-
tions. In the evaluation, we used k-fold cross-validation
(k = 7 for EKSet and k = 10 for EJSet). The test set was
divided into k subsets. Each one was used for testing,
while the remainder was used for training. Then, aver-
age WA across all k trials was computed. Through the
cross-validation, we set the size of the context window
for PrG , PrP , PrC , and PrH in Eqs. (1)–(8) at 3, and
linear interpolation parameters of hybrid-model engines
at (α, β, γ, δ1, δ2, and δ3)2.

WA =
correct TRLs. output by the system

TRLs. in the blind test data
(12)

3.1 Results
A summary of our experimental results conducted on EK-
Set and EJSet is shown in Table 1. In the experiment,
each transliteration engine generated 10-best hypothesis

1http://www.csse.monash.edu.au/˜jwb/edict.
html

2We set the parameters showing the highest Top-1 performance in
the k-fold validation. α = 0.4, β = 0.5, γ = 0.7, δ1 = 0.4, δ2 =
0.2, and δ3 = 0.4 for EKSet and α = 0.4, β = 0.5, γ = 0.7,
δ1 = 0.2, δ2 = 0.2, and δ3 = 0.6 for EJSet.

transliterations. In the table, GTM, PTM, CTM, and the
HTMs represent the individual transliteration models used
for transliteration engines. STM, SWM, and SVM rep-
resent experimental results, where hypothesis transliter-
ations generated by the seven transliteration engines are
validated by Eqs. (10), (11), and (9), respectively. More-
over, we tested the effect of BPS, BKS, and MKS on
SWM and SVM. The Top-n considers whether the cor-
rect transliteration is in the Top-n ranked list3.

Compared to individual transliteration engines, multi-
ple transliteration engines equipped with STM, SWM, and
SVM performed better, especially in the Top-1. STM by
itself showed higher performance than any other individ-
ual transliteration engine. SWM depends on the Web to
investigate whether generated hypothesis transliterations
are frequently used in real-world texts and SWM selects
the most relevant hypothesis transliterations through in-
vestigation. Based on Web search methods, SWM showed
different results. SWM(MKS) has the worst performance
because it tends to validate whether hti is used in a tar-
get language rather than whether it is used as a transla-
tion of its source language word (s). On the other hand,
SWM(BKS) and SWM(BPS) are effective because BKS
and BPS can consider both s and hti. Comparing SWM(BKS)
to SWM(BPS), SWM(BPS) showed higher accuracy in Top-
1 because of the rigid Web search condition, phrasal search,
in BPS. BPS has better ability to retrieve reliable Web
pages for validating hypothesis transliterations than BKS.
However,

∑
htk∈HT WFX (s, htk) = 0 happens in BPS

more often than in BKS. It can decrease the performance
of SWM(BPS) in validating hypothesis transliterations,
because SWM(BPS) will assign the same confidence score
to all hypotheses inHT . However, we find that the prob-
lem usually happens in BPS when HT does not include
correct hypothesis transliterations; thus it does not signif-

3For one English word, there are one or more correct transliterations
in EJSet but there is only one correct transliteration in EKSet. There-
fore, the individual models showed higher TOP-1 accuracies but lower
TOP-10 accuracies in EKSet than in EJSet.



icantly degrade the performance of SWM(BPS).
Multiple transliteration engines provide more chances

to find correct hypothesis transliterations by generating
various hypothesis transliterations, and SVM assigns each
hypothesis transliteration reliable confidence scores, with
which we can effectively decide which one is a correct
hypothesis transliteration. For these reasons, SVM(BPS)
shows the best performance. More specifically, SWM(BPS)
contributes a lot to the improved performance, while STM
contributes little to the improved performance because
SWM(BPS) correctly validates transliterations whenever
STM does. However, STM in SVM well compensated for
the errors of SWM in MKS and BKS.

We compared our approach with several previous stud-
ies: Kang and Choi [4] (GTM and PTM ), Kang and
Kim [5] (GTM ), Goto et al. [6] (GTM ), Bilac and
Tanaka [8] (HTM(G+P)), and Oh and Choi [9] (CTM ),
each of which corresponds to the transliteration model set
off in parentheses. We implemented transliteration meth-
ods of these studies with the same training and test data
as our proposed approach. We found that their perfor-
mance was similar to that of the individual transliteration
engines in Table 1 if they are based on the same translit-
eration model.

4 Conclusion
This paper describes a novel approach for improving ma-
chine transliteration performance based on a validating
hypothesis transliterations derived from multiple translit-
eration engines strategy. We produced hypothesis translit-
erations using seven transliteration engines and validated
them based on Web frequency of hypothesis translitera-
tion and the rank of each hypothesis transliteration as-
signed by individual transliteration engines. Through ex-
periments, we have shown that multiple transliteration
engines and hypothesis transliterations improve machine
transliteration performance. Moreover, we have shown
that our transliteration validation model is effective in se-
lecting correct hypothesis transliterations.

However, further research is needed to further im-
prove performance. A more sophisticated STM is nec-
essary. Rank aggregation methods used in meta-search
engines such as a Markov chain-based method [12] might
be helpful in addressing the problem.
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