SREES B 14 FFERAR

FEIRCE (2008543 A)

An Interactive, Text-based Translation Aid Environment

Eric Nichols and Yuji Matsumoto
Graduate School of Information Science,
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara, 630-0192 JAPAN
{eric-n, matsu}eis.naist.jp

1 Introduction

Translation is an essential and important part of human
communication. However, it is a very challenging task,
requiring the translator to have a complete understanding
of and a deep familiarity with the source and target lan-
guages. This difficulty is not eased by the fact that fun-
damentally it is an inherently repetitive task, consisting of
looking up unfamiliar words and doing large amounts of
editing to produce a good translation.

Given these demands, computers provide a good way to
ease this repetitiveness by automating lookup and editing;
by converting resources like dictionaries, other transla-
tions, and collections of example sentences to a computer-
readable format, lookups can be performed much faster.
Likewise sophisticated editing languages can reduce the
time and complexity of editing translations.

Since the idea of a translation aid environment was first
proposed by Martin Kay (1980), a number of different
systems have been built. There have been systems built
on (Wordfast') or mimicking (Trados?) Word processors;
stand alone applications like Déja Vu X* and OmegaT*)
and web-based translation aid systems, both free (TRANS-
Bey (Bey et al., 2006)) and commercial (Lingotek>).

A survey of professional translators in 2006 showed that
82.5% of translators own and use at least one translation
aid environment (Lagoudaki, 2006). Yet existing transla-
tion aid software has a reputation for being hard to use.
The conductor of this survey summarized her findings say-
ing users want “flexibility, simplicity, and ease of use” in
their translation aid environments. Why do current trans-
lation aid systems lack these qualities?

We consider this to be in interface problem: most trans-
lation aid environments are modeled after word processors,
with functionality for processing text often hidden away in
complex hierarchical menus or behind obscure keyboard
shortcuts, making it difficult for translators to explore and
manipulate language. Given that translation is an inher-
ently text-centered task, it makes sense to investigate the

"Wordfast: http://www.wordfast .net

2SDL Trados: http://www.trados.com/en/

3Déjél VuX: http://www.atril.com/default.asp
*OmegaT: http://www.omegat .org/

SLingotek: http://lingotek.com/features.html

potential of text as the interface. The Acme text editor pro-
vides an ideal environment for this goal.

2 Text as the Interface

2.1 Acme: An Interactive Text Editor

Acme is “a hybrid of window system, shell, and editor”
created by Rob Pike (1994) as a programming environ-
ment. At first glance, Acme seems like a strange editor; it
is designed for use with a three-button mouse, and there are
no menus or buttons of any kind. However, the interplay
between the mouse and text in Acme give it a powerful and
flexible interface.

2.1.1 The Mouse

In Acme, the mouse allows the user specify how to con-
textually interpret text. Acme is designed for use with a
three-button mouse, and each button has a different use.
The left button selects text. The middle button interprets
it as a command. For example, clicking on the text 'New’
opens a new buffer window. Clicking on 'Del’ closes that
buffer. All common editor functionality is handled in this
way: ’Snarf’ is Acme’s copy and *Put’ saves the con-
tents of the current buffer; 'Undo’ and ’Redo’ provide
their namesakes’ editing functions. Text for these com-
mands is provided in the “tag” area at the top of each
buffer, but this is simply for convenience; text can be added
and executed anywhere in Acme.

When the text middle-clicked on is not a built-in com-
mand of the Acme editor, it is interpreted as a system com-
mand, and the command is piped to a system call for exe-
cution with results are sent back to Acme. What this means
is any command that operates on standard I/O can be ex-
ecuted just by middle-clicking on its name. In this way,
Acme can be extended at any time by a large number of
commands that the user is already familiar with. Outside
of the small set of Acme-specific editor commands, there
is no need to learn any special commands to add new func-
tionality to Acme; almost all functionality is outsourced.

The right-button provides another useful function: it
performs a context-sensitive “get” function. When the
name of an existing file is right-clicked on, it is opened
in a new buffer; when the name of a function is clicked on,
its definition is shown. Clicking on a number followed by
a colon (’:”) causes the cursor to jump to that line number

- 333 -

Newcol Kill Putall Dump Exit I

New Cut Paste Snarf Sort Zerox Delcol]

New Cut Paste Snarf Sort Zerox Delcol]

Jusrferic/translations/jat/jat.ja.txt Del Snarf | Look

$E3E [ECHRADNAEH - 2DER 1 B

SEIBETHE, BERR, RIBCIREX v R—1 il rIHE, FEREE
CREE. EBENE. ERERECIVESCOLTIARTING,

BIE, EMECHSDTERRLN S TEENRRCHS LE TR DT
DEEHERC L SFEAT L SNTE Y, TOMRICOVTERL LRSI
SNTWLD, EERLEEALLEREFZOAEEEA TV S, BEAR1,

=lookup

ll /usr/eric/translations/jat/jat.jaen.txt Del Snarf Undo Redo Put | Look |chunk Edit , s/~

Jusrferic/binflookup Del Snarf | LookI
I:n lookup {
forw in "~ {tokenize|filter_by_pos|filter_punct} {
look -fx $home/edict.utf8.sorted.txt $w
}
}
args = §*
if {~$#args 0} {
lookup

H

#many pieces of research and reports there have been

forw in $args {

WEREEELEICLD HIBIEE S echo $w | lookup
#according to medical practitioners no smoking guidance }

WIEEE T VRS ICIERT BEEy }

#compared to no guidance quitting rate Jusrferic/translations/jat/+Errors Del Snarf Undo Put |I
wAEE (CIENS T, E5IC, BHDEEEICLD IRTE actually

#significantly increases furthermore/moreover by several councellors IHTE current

WENBIEE 1T - 1B ST FOEEHRN IHIE now
#cases where quitting smoking was recommended the results of that guidance HE presentI
wEICEEDrD WESLENT LS, % many
#it was reported that it will be even greater £ several
% various
HHABECHNTE BMERLIEFE D mYEAA HME foreign country
EHSNTHEY, FHEEIC BB R #k < agreeable condition
e HEE T HLTTHL, FOED BLERAIES I % honorific that attaches to name of a person or thi
Mhs #H=HERO FECR S0, FhomgE D ng that has bestowed grace or favour upon you
ST Biishic MWELZAFXILG Fmkic Eo%x Sl #&< our gracious
FOF S LI YR 1990F AR CH - T BELTETLS, E’Z varied
&~ various
T, FREENSRERS N OMFEIEEEE CIIBUERF L EE ® 556 | |ELE smoking
FETEES DIy sNd LS ChH -7, fFE health

Figure 1: Acme being used to translate a Japanese document into English

in the current buffer. Finally, if no interpretation of the text
can be found, Acme searches the current buffer for another
occurrence of that word.

2.1.2 The Buffer

Acme is arranged into resizable columns of buffers.
Acme’s buffers consist of a light blue strip of text at the
top called a tag,” a large text are immediately below, and
a scroll bar to the left of the text area. The tag area contains
the current file or directory that is open. When a directory
is open in Acme, the names of its contents are displayed.
To the right, the text for common editing operations is dis-
played followed by a blank area meant for use as scratch.

Where the tab and scrollbar intersect, there is a layout
box. This box acts as an anchor allowing the user to drag
and reposition the buffer by left-clicking on it. Right click-
ing on the box minimizes the buffer, shrinking it to just
its tag. Middle clicking on the box maximizes the buffer
by hiding all other buffers in the same column. Clicking
on the layout box makes the other buffers visible again.
When a buffer is modified, its layout box turns dark blue
to indicate there is unsaved data, and the ’Put’ command
helpfully appears in the tag.

3 Building a Translation Aid Environment
with Acme

We are currently working on a small, proof-of-concept
translation aid system using Acme focusing on the
Japanese-English language pair. We are basing our sys-
tem on Acme SAC?, a platform-independent Acme port by
Caerwyn Jones. Acme SAC provides a convenient way to
distribute Acme to users bundled as a simple, click-and-run
application.

Acme SAC is built on a virtualized operating system
called Inferno (Pike et al., 1997). Inferno has several fea-
tures that make it an ideal platform. Inferno is a hosted op-
erating system that can run on top of Windows, Mac OS X,
and Linux without any modification. The operating system
is built from the ground up supporting Unicode, and it pro-
vides a full suite of Unix-style command line utilities that
can be applied to text of any language. Inferno interfaces
with the host OS, allowing tasks like multi-lingual input to
be handled by the host’s IMEs’. Finally, Inferno can ac-
cess the data and commands on its host operating system
and share those with other instances of Inferno, providing
a transparent way of sharing networked resources and con-
ducting parallel processing.

®Acme Stand Alone Complex (http://code.google.
com/p/acme-sac)
"Multi-lingual input is not yet fully supported under Linux.

- 334 -

fn setlang {

args = $x
or {~ s$#args 1 2} {
echo ’'usage: setlang <command> [-e \ -1 >[1=2]

raise usage
}
(cmd args) = $*
set slang if first argument is recognized language flag
(and {~ $#args 1} {~ sargs -e -3} {
(lang nil) = $args
H

pipe portion of text to whichlang for identification
and set $lang if it is still unset

tmp = ${pid}".tmp

if {~ $#lang 0} {

1 = ‘{tee $tmp | sed 200g | whichlang}
if {~ $1 en} {

lang = -e
} (- 81 3a) {

lang = -j

}
}
call command; pipe $tmp to command if $tmp file exists
if {ftest -f Stmp} {

($cmd $lang) < Stmp

rm -f $tmp

$cmd $lang

fn tok_en {
geniatagger >[2=] |
cut -f1 |
tr ‘\n’ "’

tokenize discarding stderr

}

fn tok_ja {
tes -f utf-8 -t euc-jp |
mecab -Owakati | suppress POS output,

tokenizing into words

3

tecs -f euc-jp -t utf-8

}

fn tok_any {

args = $#

if {7 $1 -e} { # English
f = tok_en
(lang args) = Sargs

P os1 -3} { # Japanese
f = tok_ja
(lang args) = $args

A

f = tok_en
}

sf sargs

ES

Use English as fallback

ES

call function on args

}

fn tokenize {
setlang tok_any $x
}

Figure 2: An interface for the tokenize task, implemented in Inferno’s shell

4 Task-driven Interfaces for Translation

4.1 Splitting Text into Translation Units

Splitting text into easy-to-handle chunks called “Transla-
tion Units (TUs)” is a common task in a translation work-
flow. It often acts as a first step for alignment, translation
auto-complete, and other tasks.

We implemented a command, chunk, which splits un-
processed text into phrase-like TUs. We use tabs as the
delimiter, turning the process of editing, splitting, or merg-
ing TUs from a potentially complex operation to a simple
text edit. chunk is implemented using the dependency
parser Cabocha (Kudo and Matsumoto, 2002) for Japanese
and the part-of-speech tagger and chunker Genia Tagger
(Tsuruoka and Tsujii, 2005) for English.

An example application of chunk is shown in Figure
1: the | chunk command highlighted in the tag bar of the
lower left-hand buffer has been called on the selected para-
graph in the middle of the buffer. The ”|” symbol indi-
cates that the chunk command should pipe its I/O to and
from the selected region, performing an inline replace of
the original text with its equivalent TUs.

4.2 Dictionary Lookup

Consultation of references is an essential function of any
translation aid environment. Acme provides a dictionary
browsing mode called ’adict’ that displays a word’s full
definition and allows easy navigation to other entries. We
also provide a batch lookup command that lets the user re-
trieve the definitions of all of the words in a section of text.
To look up words the input is tokenized and lemmatized,
and all of the resulting tokens are searched for in the dictio-
nary. The definitions are displayed in a new buffer window

in the order of the input, providing some context for choos-
ing a translation. We currently use Edict® and Wikipedia®
for our dictionaries.

Batch lookup is shown in action in Figure 1: the com-
mand >1ookup in the upper left-hand buffer has been ap-
plied to the selected paragraph of text. The results of the
lookup appear in the lower rightmost buffer. The ”>” sym-
bol indicates that the selected text is piped to the command
as input.

4.3 Editing and Formatting

Acme provides a powerful, regular expression based edit-
ing language called Edit. Edit’s command language
resembles that of the Unix command sed. It has been
extended to allow the user to specify target regions of text
either manually or through pattern matching. A typical call
may look like this: Edit , s/%//g.

The comma instructs Edit to apply the command to
the entire buffer; the remaining command matches lines
starting with a percent sign and removes it, in effect un-
commenting them. In this way, Edit obviates the need
for a “’search-and-replace” function, like commonly built
into other text editors.

Edit can be used to apply any command to the text in
a buffer. For example grep -v could be used to delete
lines matching a certain pattern, or a programming in a
scripting language could be used for more intricate pro-
cessing.

8Edict: http://www.csse.monash.edu.au/~jwb/

j_edict.html
"Wikipedia: http://www.wikipedia.org/

- 335 -

5 Consistent Interfaces for Disparate Tools

Our goal is to provide translators with a simple, consistent,
language-independent interface for each task regardless of
the complexity of underlying implementation. We do this
by abstracting away language-dependent implementations
and selecting the proper one based on the input language.

We start by standardizing the input and output for each
task. For example, tokenizer, as shown in Figure 2,
takes unmodified text as its input and returns text tokenized
at the word level and delimited by whitespace.

Next, each language-specific implementation is given its
own shell function named fask_language. tok_en shows
how the English tokenizer is implemented by filtering and
reassembling the output of geniatagger.'® The corre-
sponding Japanese function, tok_ja is implemented by
using the - Owakatigaki output mode of the part-of-speech
tagger MeCab!!. tcs is a command line utility that han-
dles the conversion to and from the EUC-JP encoding nec-
essary to use mecab.

All of the language-specific implementations are then
gathered in a shell function named fask_all that acts as a
multiplexer, selecting the proper implementation by a lan-
guage flag that is set when the function is called. tok_all
defaults to English if a supported language is not specified.

Finally, the complete user interface is produced by
wrapping the multiplexer with the setlang function.
setlang checks to see if a language flag has been man-
ually set, and if not, pipes a small portion of the in-
put to whichlang, a simple language auto-identification
heuristic whose implementation is described in (Nichols
and Matsumoto, 2007).

The final user interface is a simple one-word command:
tokenize. The user simply highlights the text to be pro-
cessed and middle-clicks on the text tokeni ze to execute
it. This method of abstraction is powerful and reusable; we
use it to build the interfaces of chunk, 1ookup, and the
other translation tasks.

6 Conclusion

6.1 The Power of Text

Although it is still early in its developmental phase, Acme
shows promise as translation aid environment, and we are
already using it for translating software manuals in our lab.
By embracing text as its interface, Acme removes the bar-
rier between users and their text, making it easier to ap-
ply their existing tools and resources, and giving them the
freedom needed to adapt to dynamic workflows. As we
saw in Section 4, adopting a Unix pipe-based model of text
processing simplifies both the interfaces of NLP tools and
their integration into the translation aid environment.

195 [2=] is a shell idiom to disable standard error output.
"MeCab: http://mecab. sourceforge.net/

6.2 Problems Encountered

There are several problems that must be addressed before
Acme can become a fully-usable translation aid environ-
ment. (1) One of Acme’s strengths is the ease in which
existing tools can be incorporated, however, tools external
to Acme and Inferno still need to be installed by the end
user. This can be difficult for programs like MeCab and
Genia Tagger, as the installation requirements and process
can vary between host OSes. (2) Furthermore, it is argued
in (Abekawa and Kageura, 2007) that vocabulary lookup
needs to be tailored to the task of translation to be effective.
We need to consider whether off-the-shelf NLP compo-
nents are really up to this task. (3) Finally, as most transla-
tors cannot avoid formatted documents like MS Word and
PDFs, we need to explore how markup can best be handled
in a plain-text based environment.

6.3 Future Work

We have several ideas for improving Acme’s usefulness as
a translation environment. (1) In order to solve software
distribution problems and create tools that are more appro-
priate for translation, we plan to implement a language-
independent tokenizer and chunker that will run natively
in Inferno. This will allow us to package all of the trans-
lation aid software as a part of Acme SAC. (2) Because
Acme only handles Unicode text, we currently must deal
with constantly re-encoding the text as different tools are
applied. Noah Evans (2007) has developed a file system
layer that will transparently handle conversion to and from
Unicode when files are accessed in Acme. (3) We plan to
explore how Inferno’s network sharing capabilities could
be used to allow translators to pool their resources.

References

Takeshi Abekawa and Kyo Kageura. 2007. A translation aid system with a stratified lookup
interface. In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Demos and Posters, pages 5-8, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Youcef Bey, Christian Boitet, and Kyo Kageura. 2006. The transbey prototype: An online col-
laborative wiki-based cat environment for volunteer translators. In Proceedings of the 3rd
International Workshop on Language Resources for Translation Work, Research & Training,
pages 49-54. Fifth International Conference on Language Resources and Evaluation.

Noah Evans. 2007. Representing disparate resources by layering namespaces. In Proceedings of
the Second International Workshop on Plan 9, pages 19-24.

Martin Kay. 1980. The proper place of men and machines in language translation. Technical
Report CSL, 80-11.

Tako Kudo and Yuji Matsumoto. 2002. Japanese dependency analyisis using cascaded chunking.
In Proceedings of CoNLL-2002, pages 63—69.

Elina Lagoudaki. 2006. Translation memories survey 2006: Users’ perceptions around tm use.
In Proceedings of the ASLIB International Conference Translating & the Computer 28.

Eric Nichols and Yuji Matsumoto. 2007. Acme as an interactive translation environment. In
Proceedings of the Second International Workshop on Plan 9, pages 35-46.

Rob Pike, Dave Presotto, Sean Dorward, Dennis M. Ritchie, Howard Trickey, and Phil Winterbot-
tom. 1997. The Inferno operating system. Bell Labs Technical Journal, 2(1), Winter.

Rob Pike. 1994. Acme: A user interface for programmers. In Winter 1994 USENIX Conference,
pages 223-234.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirectional inference with the easiest-first
strategy for tagging sequence data. In Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language Processing, pages 467-474, Mor-
ristown, NJ, USA. Association for Computational Linguistics.

- 336 -

