
Automatic Error Detection for Natural Language Generation

Michael Wayne Goodman† Francis Bond‡

† University of Washington
‡ NICT Language Infrastructure Group, MASTAR Project

goodmami@u.washington.edu, bond@ieee.org

1 Introduction

One of the advantages of deep grammars, such as
those based on HPSG, is that they can be used for
generation as well as parsing. However, typically
they are tested more thoroughly for parsing. In
this paper we introduce a system that helps the
grammar engineer efficiently bring the generation
capabilities to the same level as the parsing. The
system can quickly and accurately determine the
characteristics of parsed and generated sentences
from a deep grammar, and then find the most
salient grammar rules used in producing partic-
ular classes of sentences. For our purposes, we
generally look at sentences that cannot generate
or overgenerate, find the problematic rules caus-
ing them to be that way, and attempt to fix those
rules.

Consider (1), the grammar was able to parse
this sentence, but was unable to generate any new
sentences from its semantics (Section 4.2 elabo-
rates on this particular issue).

(1) 彼女
kanojyo
she

は
wa
top

写真
shashin
picture

写り
utsuri
taking

が
ga
nom

いい
ii
good

She is good at taking pictures

The system is tested both on Jacy, an imple-
mented HPSG grammar for Japanese and the
ERG (English Resource Grammar). Often, by fix-
ing the problems we not only improve generation
results, but also parsing coverage and accuracy.

1.1 Motivation

Bond et al. (2008) showed that by producing para-
phrases of the English side of an aligned corpus,
they could increase their corpus size and improve
the performance of a statistical machine transla-
tion system. We want to increase the size of the
Japanese side of the corpus for the same reasons.
However, Jacy could not generate new sentences
nearly as well as the ERG, and was thus unusable

for the task. Table 1 shows the initial parsing and
generation statistics for both the ERG and Jacy
(further explanation of the table is in Section 2.1).

Improving generation would also greatly benefit
to-Japanese machine translation tasks using the
Jacy grammar. It has also been shown that by
improving generation, one can generally increase
parsing performance.

1.2 Resources

We use the Jacy (Siegel, 2000) Japanese gram-
mar (hereafter “Jacy”) and the English Resource
Grammar (ERG) (Flickinger, 2000) within the
DELPH-IN1 machinery (PET (Callmeier, 2000)
for parsing and LKB (Copestake, 2002) for gen-
erating). These are rule-based systems based
on the Head-driven Phrase Structure Grammar
(HPSG) (Pollard and Sag, 1994) formalism for
syntax, and Minimal Recursion Semantics (MRS)
(Copestake et al., 2005) for semantic representa-
tion. These grammars can process a corpus of in-
put sentences and output parsing and generation
profiles, which include lists of processable items,
their derivation trees, MRS, and surface form. We
use the Tanaka Corpus (Tanaka, 2001) for both
our English and Japanese input sentences. In this
paper, we will refer to a corpus item as the col-
lection of an input sentence, its parse information
(parse trees, MRS), and its generation informa-
tion (generated trees, MRS, surface forms).

Regarding the parsing and generation pro-
cesses, we are paraphrasing sentences into the
same language. This entails first parsing the in-
put sentence and obtaining the semantics from
the best ranked parse(s), then using those seman-
tics as input to generate new sentences. There-
fore, we can only generate new sentences from
sentences that could be parsed.

1Deep Linguistic Processing with HPSG Initiative –
see http://www.delph-in.net for background informa-
tion, including the list of current participants and pointers
to available resources and documentation

������ �������� ��������������

－ 272 －



ERG Jacy
abs rel abs rel

Unparsable 13% 21%
Ungeneratable 4% 4% 35% 44%
No original 12% 15% 34% 77%
Only original 34% 40% 1% 2%

Table 1: Initial general statistics

ERG Jacy
Lexemes differ 50% 90%
Tree differs 69% 75%
Rules differ 64% 56%
String differs 63% 95%
MRS differ 5% 10%

Table 2: Initial comparative statistics

2 Data Collection

Our error detection routine is a two-step process.
First we analyze the parsing and generation pro-
files to determine the characteristics of each
item. Characteristics include things such as lexi-
cal, syntactic, semantic, and surface similarity to
the original parsed sentence. We will call a unique
sequence of characteristics a characteristic pat-
tern, abbreviated as CP. The second step in our
error detection routine is to find the most salient
grammar rules for certain CPs. To do this step,
we first train a classifier with a simplified form of
each sentence’s syntactic structure as features and
a string representation of each respective CP as
labels. After training, we find the rules that have
the highest association to certain characteristics.
In our tests, we found that the highest ranked
rules for a class of problematic sentences indeed
pointed to the most significant problems in those
sentences.

2.1 Determining Characteristics

In Tables 1 and 2, we list nine different charac-
teristics. The characteristics listed in Table 1 are
general, process-related qualities, and those listed
in Table 2 are comparative qualities between the
parsed and generated sentences.

“Unparsable” means the grammar was unable
to parse the input sentence, and “Ungenerable”
means that it could not generate from the seman-
tics created by a successful parse. “No original”

means that the grammar could parse and gener-
ate from an input sentence, but could not gener-
ate the original parsed sentence. “Only original”
means that the grammar could parse and gener-
ate a sentence, but could only generate the orig-
inal sentence. This might be expected for very
simple sentences.

Items where the “Lexemes differ” in the parsed
and generated sentences will have a word in-
serted, deleted, or replaced with something dif-
ferent. “Rules differ” means that the (unordered)
set of rules invoked when generating that sentence
is different from the set invoked when parsing the
original sentence. “Tree differs”, on the other
hand, occurs when the derivation tree (that is, the
rules and their structure) differs from the parse’s
in some way. “String differs” occurs when the sur-
face form of the parsed and generated sentences
are different (ignoring some punctuation). Lastly,
“MRS differ” means that the argument structure
in the semantics are not equivalent. Because we
are paraphrasing from the same semantic struc-
ture we should never have different semantics in
the parsed and generated sentences.

2.2 Problematic Rule Ranking

Once we have created a matrix of characteristic
patterns for all input and output sentences, we
train a maximum entropy-based classifier over the
derivation tree and CPs. For each item, we ex-
tract a set of n-grams of nonbranching paths from
the parse trees, creating separate paths for each
branch in the original tree. These sets of paths are
used as the features in the classifier. See Figure
1 for an example derivation tree and some paths
extracted from it. We call these rule paths, ab-
breviated as RP. A string representation of the
CPs from each item are then used as labels.

3 Results and Interpretation

While the ranking of problematic rules requires
the characteristic patterns to be determined in
order to run, both the ranked RPs and the CPs
are useful individually to a grammar developer.
We will describe how one can use each of these
resources for grammar error detection.

3.1 Interpreting Characteristic Patterns

While some characteristics in a CP are mutually
exclusive (e.g. “Unparsable” and “Ungenerable”)

－ 273 －



quantify-n-lrule

compounds-rule

kikai-machine
機械

vn2n-det-lrule

honyaku 1
翻訳

• quantify-n-lrule → compounds-rule → kikai-machine

• compounds-rule → kikai-machine → 機械

• quantify-n-lrule → compounds-rule → vn2n-det-lrule

• compounds-rule → vn2n-det-lrule → honyaku 1

• vn2n-det-lrule → honyaku 1 → 翻訳

Figure 1: Derivation tree for “機械翻訳” (“machine translation”) and paths with length of 3

others often occur in parallel. Those that oc-
cur together are most likely not independent from
each other. For instance, if a generated sentence
has different lexemes from the original sentence,
then it most likely will also have a different sur-
face form.

Sometimes it can be useful to look at charac-
teristics in combination. For example, every time
an item has differing sets of rules it will invariably
have differing trees as well. If, instead, the sets
of rules are the same, but the tree structures dif-
fer, then there is a strong reason to believe that
the clauses in the sentence were simply reordered.
Similarly, if an item has identical sets of lexemes,
sets of rules, and derivation trees, but has differ-
ing surface forms, then it is likely applying incor-
rect inflectional rules, since inflectional rules do
not appear in the derivation tree.

3.2 Interpreting Problematic Rules

Our list of ranked rule paths is sorted on the score
each RP received from the classifier. This is use-
ful information, but it is incomplete. For exam-
ple, the RP vend-vend-rule → adj-te-t-lexeme-c-
stem-infl-rule → nai-notyetend → “なく” has a
score of 0.34, and the RP hf-complement-rule →
head-specifier-rule → koto-pred → “こと” has a
(lower) score of 0.25, but the former only has 9
occurrences in the corpus, compared to the lat-
ter’s 63. For the grammar developer looking to
fix bugs, the latter RP offers to yield more gain
than the former, despite its higher score. There-
fore, along with the score from the classifier, we
also output the raw count of the items using that
particular RP.

For a given list of ranked RPs, not all are
unique. Since the RPs are n-grams, there are
many overlapping or subset RPs, and often each

variant will receive a similar score. To reduce the
amount of cruft, we exclude RPs that are subsets
or supersets of a previously listed RP. We do not
exclude RPs that are merely shifted (such as 1-2-3
and 2-3-4) since there is less assurance that they
do not actually describe a different problem.

For example, we saw that the highest ranking
RP was quantify-n-lrule → compounds-rule, and
it also occured many times in the corpus. This
RP is a bigram that could be taken from the
derivation tree in Figure 1. It turned out that
the problem was indeed the interaction between
the quantify-n-lrule and the compounds-rule. See
Section 4.2 for more information on the solution
to this problem.

4 Grammar Fixes

With the information provided by our system,
we tried to fix some of the most prevalent prob-
lems. The first problem we fixed was to restruc-
ture how the grammar treated commas and colons
as topic markers. The second was to change the
rule for noun quantification so compound nouns
could generate. We modified the treatment of nu-
meral classifiers so they compound (e.g. ５年契
約 go-nen keiyaku “5-year contract”), stand alone
as nouns they affect (e.g. 三匹が吠える san-biki
ga hoeru “Three (animals) bark”), and generate
properly in certain constructions (e.g. ３匹の犬
san-biki no inu “three dogs”). We removed some
lexemes that caused spurious ambiguity, such as
the hiragana versions of the verbs にる niru “to
boil” andてる deru “to leave, to attend”, as they
would incorrectly be used in place of the ni and
de case markers. From this (non-exhaustive) list
of changes made to the grammar, we will describe
the first two in more detail.

The changes we made improved generation cov-

－ 274 －



before after
abs rel abs rel

Unparsable 21% 17%
Ungeneratable 35% 44% 28% 34%
No original 34% 77% 41% 74%
Only original 1% 2% 1% 2%
Lexemes differ 90% 88%
Tree differs 75% 72%
Rules differ 56% 50%
String differs 95% 94%
MRS differ 10% 0.2%

Table 3: Jacy statistics, before and after

erage (over those items that could be parsed) by
nearly 10% to 66%, while reducing overgenera-
tion. See Table 3 for updated statistics from the
improved grammar.

We also found some errors in the English gram-
mar: e.g. the morphology is wrong for some
gerunds: for the input I showered before break-
fast , we generate I showerred before breakfast .

4.1 Overgenerating Topic Markers

In the initial version of Jacy, punctuation such
as commas, colons, and equals could be treated
as topic markers, which were a subtype of the
wa-topic marker. This worked for parsing, but
in generation we would overgenerate a comma,
colon, or equals for every instance of a wa-
topic marker as in (2). We solved this by mak-
ing the topic-marker hierarchy more informative:
comma, colon, equals, and wa were specialized to
daughter types of a “topic” parent type. By mak-
ing this change, we improved generation accuracy
by eliminating many undesirable results. Parsing
and generation coverage were not affected.

(2) a. その 計画 は 具体 化 し て き た

The project is taking shape

b. その 計画 、 具体 化 し て き た

c. その 計画 ： 具体 化 し て き た

d. その 計画 ＝ 具体 化 し て き た

4.2 Ungenerable Compound Nouns

Compound nouns (like the one in Figure 1) caused
almost every sentence in which they occurred to
be ungenerable. The only sentences that could
generate were those with explicit quantifiers, such

as この kono “this”. The problem was in the
quantification of bare-nouns after compounding.
The quantification rule was a lexical-rule and the
generator could not apply it after a phrase-rule
(such as the compounds-rule). Thus, we changed
the quantification rule to be a phrase-rule, allow-
ing compounds to generate. This resulted in a
large boost in generation coverage. Fixing this
bug led to changes in other areas, such as numeral
classifiers. The extra changes not only resulted
in greater generation coverage, but also increased
parsing coverage by about 1.5%.

5 Conclusion

We have introduced a system that not only an-
alyzes problems in an implemented HPSG gram-
mar, but also finds and ranks the possible sources
of those problems. This tool can greatly reduce
the amount of time a grammar developer would
spend finding bugs, and helps them make in-
formed decisions about which bugs are best to
fix. Using our system, we were able to improve
Jacy’s generation coverage by 10% with only two
weeks of grammar development.

References

Francis Bond, Eric Nichols, Darren Scott Appling, and
Michael Paul. 2008. Improving statistical machine trans-
lation by paraphrasing the training data. In Interna-
tional Workshop on Spoken Language Translation, pages
150–157. Honolulu.

Ulrich Callmeier. 2000. PET - a platform for experimenta-
tion with efficient HPSG processing techniques. Natural
Language Engineering, 6(1):99–108.

Ann Copestake. 2002. Implementing Typed Feature Struc-
ture Grammars. CSLI Publications.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A.
Sag. 2005. Minimal Recursion Semantics. An introduc-
tion. Research on Language and Computation, 3(4):281–
332.

Dan Flickinger. 2000. On building a more efficient gram-
mar by exploiting types. Natural Language Engineering,
6(1):15–28. (Special Issue on Efficient Processing with
HPSG).

Carl Pollard and Ivan A. Sag. 1994. Head Driven Phrase
Structure Grammar. University of Chicago Press,
Chicago.

Melanie Siegel. 2000. HPSG analysis of Japanese. In
Wolfgang Wahlster, editor, Verbmobil: Foundations of
Speech-to-Speech Translation, pages 265 – 280. Springer,
Berlin, Germany.

Yasuhito Tanaka. 2001. Compilation of a multilingual par-
allel corpus. In Proceedings of PACLING 2001, pages
265–268. Kyushu. (http://www.colips.org/afnlp/
archives/pacling2001/pdf/tanaka.pdf).

－ 275 －




