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1 Introduction

1.1 String-to-tree translation

A state-of-the-art syntax-based Statistical Machine
Translation (SMT) model, string-to-tree translation
model (Galley et al., 2004; Galley et al., 2006; Chi-
ang et al., 2009), is to construct a number of parse
trees of the target language by ‘parsing’ a source
language sentence making use of a bilingual trans-
lation grammar. Given a set of parallel sentences
for training, optimal word alignments for every sen-
tence pairs are first derived by using GIZA++ (Och
and Ney, 2003). Then, a syntactic parser is used to
parse the target sentences into trees. A source sen-
tence, a target parse tree, and the alignment between
the source and target words form an ‘aligned tree-
string pair’.

In order to split a tree into tree fragments yet
obeying the constraints from the word alignment,
algorithms proposed by Galley et al. (2004; 2006)
are the de facto standard for extracting minimal
and composed tree-string translation rules from the
aligned tree-string pairs. n-gram language model
(LM) integrated CKY algorithm (Huang and Chi-
ang, 2005; Chiang, 2007) is popularly used for de-
coding. Tree-string translation rules are binarized
(Zhang et al., 2006) into Chomsky normal forms be-
fore been used by the CKY algorithm.

Figure 1 illustrates the training and testing process
of Japanese string to English tree translation. For
simplicity, similar example is used for both trans-
lation rule extracting and decoding. During train-
ing, suppose we are given an aligned tree-string pair,
GHKM algorithm (Galley et al., 2004) is first ap-
plied for minimal rule extraction. During testing,
given a Japanese sentence, we try to build a number
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Figure 1: Illustration of the training and testing process
for string-to-tree translation.

of English parse trees using the (binarized) transla-
tion rules. The translation output can be easily col-
lected by accessing the leaves in a parse tree through
a left-to-right traversal.

1.2 Deep syntactic structures

In contrast to commit to a Probabilistic Context-Free
Grammar (PCFG) parser which only generates shal-
low trees of English (Galley et al., 2004; Galley et
al., 2006; Chiang et al., 2009), we propose the use
of deep parse trees and semantic dependencies de-
scribed respectively by Head-driven Phrase Struc-
ture Grammar (HPSG) (Pollard and Sag, 1994) and
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feature description
CAT phrasal category
XCAT fine-grained phrasal category
SCHEMA name of the schema applied in the node
HEAD pointer to the head daughter
SEM HEAD pointer to the semantic head daughter
CAT syntactic category
POS Penn Treebank-style part-of-speech tag
BASE base form
TENSE tense of a verb
ASPECT aspect of a verb
VOICE voice of a verb
AUX auxiliary verb or not
LEXENTRY assigned lexical entry
PRED type of a predicate
ARG⟨x⟩ pointer to semantic arguments, x = 1..4

Table 1: Syntactic/semantic features extracted from
Enju’s HPSG signs.

Predicate-Argument Structures (PASs).
We illustrate two major characteristics that an

HPSG tree yielded by Enju1, a state-of-the-art
HPSG parser for English, differs from a traditional
PCFG tree. First, a node in an HPSG tree is repre-
sented by a typed feature structure (TFS) with richer
information (Table 1) than a PCFG node that is com-
monly represented by only POS/phrasal tags. Sec-
ond, PASs, which describe the semantic relations
among a predicate (can be a verb, adjective, prepo-
sition, etc.) and its arguments, are used for guiding
local/global reordering during translation.

For example, in Figure 2, we show the HPSG
pare tree of the English sentence John killed Mary.
Each node in the tree is expressed by a set of instan-
tiated features as listed in Table 1. Consequently,
each tree-string rule listed in the left-bottom corner
of Figure 2 include an HPSG tree fragment. For sim-
plicity, we only use the node identifiers such as c0,
t0 to represent the complete TFSs in the tree. Also,
transitive verb killed has a PRED to be ‘verb arg12’,
the subject argument ARG1 to be c1, and the direct
object argument ARG2 to be c5. In order to localize
this semantic dependency into one tree fragment, we
define minimum covering tree to cover a predicate
word and its arguments. The tree-string rule listed
in the right-bottom corner of Figure 2 reflects that
two arguments are necessary for the transitive verb
killed. The reordering among killed and its two ar-

1http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
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Figure 2: Illustration of the deep syntactic structures for
rule extraction.

guments are reflected as well by the alignments in
broken lines.

2 Binarization

For efficient decoding with integrated n-gram LMs,
we follow (Zhang et al., 2006) to synchronously
binarize all translation rules (extracted from the
HPSG-tree structures and PASs) into Chomsky Nor-
mal Forms that contain at most two variables and can
be incrementally scored by LM. In order to make use
of the binarized rules in the CKY decoding, we add
two kinds of glues rules:

S → Xm
(1), Xm

(1); (1)

S → S(1)Xm
(2), S(1)Xm

(2). (2)

Here Xm ranges over the nonterminals that appear
in the binarized rule set. These glue rules can be
seen as an extension from X to {Xm}of the two glue
rules described in (Chiang, 2007).
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3 Translation model and decoding

Our string-to-tree model utilizes a (Hiero-style)
phrase-translation table (PTT) generated by using
Moses (Koehn et al., 2007), a (binarized) HPSG
tree-based rule set (TRS) extracted by using the al-
gorithms described in (Galley et al., 2006), and a
(binarized) PAS-based rule set (PRS) extracted by
using the Algorithm 1 described in (Wu et al., 2009).
We use Z-mert2 (Zaidan, 2009) to tune the weights
of the features from PTT, TRS, and PRS on the de-
velopment set.

The decoder searches for the optimal derivation
d∗ that transforms a source (e.g., Japanese) sentence
F into a parse forest of English among the set of all
possible derivations D:

d∗ =argmax
d∈D

{λ1 log pLM (τ(d)) + λ2|τ(d)| (3)

+ λ3g(d) + log s(d|F )}. (4)

Here, the first item is the LM probability, the second
item is the translation length penalty where τ(d) is
the target string for derivation d, the third item is the
number of glue rules used in d, and the forth item is
the translation score, which is further decomposed
into the product of rule feature values:

s(d|F ) =
∏
r∈d

f(r1)f(r2)f(r3), (5)

where r1 ∈ PTT, r2 ∈ TRS, and r3 ∈ PRS. This
equation reflects that the translation rules come from
three sets. Each f(r) is in turn a product of five
feature functions:

f(r) = p(s|t)λ4 ·p(t|s)λ5 ·l(s|t)λ6 ·l(t|s)λ7 ·eλ8 . (6)

Here, s/t represent the source/target phrases of a
rule in PTT, TRS, or PRS; p(·|·) and l(·|·) are the
translation and lexical probabilities of rules from
PTT, TRS, and PRS. Note that the derivation length
penalty is controlled by λ8.

We use a CKY-style algorithm with beam-pruning
and cube-pruning (Chiang, 2007) to decode Chinese
sentences. For each source language sentence F , the
output of the chart-parsing algorithm is expressed
as a hyper-graph representing a set of derivations.
Given such a hyper-graph, we use the Algorithm 3
described in (Huang and Chiang, 2005) to extract its
k (= 200) best derivations for MERT.

2http://www.cs.jhu.edu/ ozaidan/zmert/

system BLEU(%) node type
Joshua 14.00 -
PTT 12.98 -
PTT+PRS 14.65 ∗ TFS
PTT+CS

3 15.23 ∗∗ POS/phrasal
PTT+C3 15.83 ∗∗ TFS
PTT+C3+PRS 15.85 ∗∗ TFS

Table 2: The BLEU scores achieved by Joshua and our
system variants. * or ** = significantly better than Joshua
(p < 0.05 or 0.01, respectively).

4 Experiments

The JST Japanese-English paper abstract corpus3,
which consists of one million parallel sentences, was
used for training and testing. Using Enju2.3.1, we
successfully parsed 987,401 English sentences of
the 994K sentences in the training set, with a suc-
cess rate of 99.3%. Both the development and the
test set contain 2K parallel sentences.

For HPSG-tree based rule extraction, we follow
(Galley et al., 2006) to construct derivation-forests
for each aligned tree-string pairs in order to include
rich syntactic context and cover the feasible attach-
ments of unaligned Japanese words. There are still
6.3% unaligned Japanese words appearing in 83.7%
of the training sentences after using GIZA++ and
grow-diag-final-and (Koehn et al., 2007) balancing
strategy. SRILM toolkit (Stolcke, 2002) was em-
ployed to train a 5-gram LM on the 994K English
sentences with modified Kneser-Ney smoothing.

The baseline system for comparison is Joshua (Li
et al., 2009), a freely available decoder which im-
plemented the hierarchical phrase-based translation
model (Chiang, 2005). We evaluated the transla-
tion quality using the BLEU metric (Papineni et
al., 2002). We used four dual core Xeon machines
(4×3.0GHz×2CPU, 4×64GB memory) to run all
the experiments.

The translation accuracies of Joshua and our sys-
tem variants are shown in Table 2. C3 represents the
set of composed rules in which the number of inter-
nal nodes in tree fragments (of tree-string rules) is
no more than 3. CS

3 is similar with C3 except the
TFS of each node is replaced by POS/phrasal tags.

No reordering was performed when using PTT for
decoding, which explains that only use PTT in our

3http://www.jst.go.jp
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system performed worse than Joshua. We gained a
significant improvement (p < 0.01) on BLEU score
by appending PRS to PTT. This reflects that PAS-
based rules are compact and helpful for reordering.
PTT+PRS is significantly better (p < 0.05) than
Joshua, thanks to the TFS and semantic information
included in the PAS-based rules.

By replacing simple POS/phrasal tags with TFSs,
we gained 0.6 (%) BLEU points from PTT+CS

3 to
PTT+C3. This tells that HPSG trees do perform a
fine-grained description of the syntactic property.

Finally, by appending PRS to PTT+C3, the BLEU
score changed slightly. We argue this is because C3

covers most rules in PRS. For example, the PAS-
based rule listed in the right-bottom corner of Figure
2 is also a composed rule (∈ C3) by connecting the
three minimal rules (a), (d), and (e) listed in the left-
bottom corner of Figure 2 (gray arrows).

5 Conclusion

We have introduced deep syntactic structures which
significantly improved the performance of string-to-
tree translation. We used an HPSG parser to ob-
tain the deep syntactic structure of a target sen-
tence, which includes fine-grained description of the
syntactic property and also a semantic representa-
tion of the sentence. We described the log-linear
translation model and n-gram LM integrated CKY-
decoding of our string-to-tree system. Experiments
on large-scale Japanese-to-English translation tes-
tified the significant effectiveness of our proposal.
The system will be released as an open source toolkit
in the near future.
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