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Abstract

This paper describes constituent parsing of

Japanese using a probabilistic context-free

grammar treebank grammar that is enhanced

with Parent Encoding, reversible tree trans-

formations, refinement of treebank labels and

Markovisation. We evaluate the quality of the

resulting parsing.

1 Introduction

The focus of this paper is on the task of ob-

taining a constituent parser for Japanese us-

ing a treebank (Keyaki Treebank) as training

data and a Probabilistic Context-Free Gram-

mar (PCFG) as parsing method. We report re-

sults for a vanilla PCFG model that is directly

read off the training data and for an enhanced

PCFG model obtained with transformations of

the training data that aim to tune the treebank

representations to the specific needs of proba-

bilistic context-free parsers, while allowing for

the original annotation to be restored. Specif-

ically, we follow best practices from Johnson

(1998), Klein and Manning (2003) and Fraser

et al. (2013) among others of Parent Encoding,

reversible tree transformations, refinement of

treebank labels and Markovisation. PCFGs so

derived can be used by a parser to construct

maximal probability (Viterbi) parses. We eval-

uate the quality of the resulting parsing using

standard PARSEVAL constituency measures.

Our fully labelled bracketing score for a held-

out portion of the Keyaki Treebank (1,300

trees) is 79.97 (recall), 80.61 (precision) and

80.29 (F-score). We show a learning curve

suggestive that parser performance will con-

tinue to strongly improve with access to more

training data.

Table 1: Keyaki Treebank content

Domain Number of trees

blog posts 217

Japanese Law 484

newspaper 1600

telephone calls 1177

textbooks 7733

Wikipedia 2464

Total 13675

2 The parser

The parsing of this paper is made possible

because of the unlexicalised statistical parser

BitPar (Schmid, 2004), which allows any

grammar rule files in the proper format to be

used for parsing. BitPar uses a fast bitvector-

based implementation of the Cocke-Younger-

Kasami algorithm, storing the parse chart as

a large bit vector. This enables full parsing

(without search space pruning) with large tree-

bank grammars. BitPar can extract from the

parse chart the most likely parse tree (Viterbi

parse), or the full set of parses in the form of a

parse forest, or the n-best parse trees.

3 The treebank

The grammar and lexicon used by the Bit-

Par parser are extracted from the Keyaki Tree-

bank (Butler et al. 2012). The current com-

position of the Keyaki Treebank is detailed

in Table 1. The treebank uses an annota-

tion scheme that follows, with adaptations for

Japanese, the general scheme proposed in the

Annotation manual for the Penn Historical

Corpora and the PCEEC (Santorini 2010).

Constituent structure is represented with la-

belled bracketing and augmented with gram-

matical functions and notation for recovering
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discontinuous constituents. Primary motiva-

tion for the annotation has been to facilitate au-

tomated searches for linguistic research (e.g.,

via CorpusSearch1), and to provide a syntactic

base that is sufficiently rich to enable an au-

tomatic generation of (higher-order) predicate

logic based meaning representations.2 A typi-

cal parse in tree form looks like:
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Every word has a word level part-of-speech la-

bel. Phrasal nodes (NP, PP, ADJP, etc.) im-

mediately dominate the phrase head (N, P,

ADJ, etc.), so that the phrase head has as sis-

ters both modifiers and complements. Mod-

ifiers and complements are distinguished be-

cause there are extended phrase labels to mark

function (e.g., -EMB encodes that the clause

テレビをつけた is a complement of the

phrase head まま). All noun phrases imme-

diately dominated by IP are marked for func-

tion (NP-SBJ=subject, NP-OB1=direct object,

NP-TMP=temporal NP, etc.). The PP la-

bel is never extended with function mark-

ing. However the immediately following

sibling of a PP may be present in the an-

notation to provide disambiguation informa-

tion for the PP. Thus, (NP-OB1 *を*) in-

dicates the immediately preceeding PP (with

case particleを) is the object, while (NP-SBJ

*) indicates the immediately preceeding PP

(without case particle) is the subject. All

clauses have extended labels to mark function

(IP-MAT=matrix clause, IP-ADV=adverbial

clause, IP-REL=relative clause, etc.).

4 Extracted grammars

Figure 1 shows the growth of extracted phrase

structure rules for a vanilla grammar model di-

rectly read off the Keyaki Treebank and also

for an enhanced model. The enhanced model

is obtained after reversible changes are made

to the treebank aimed at improving parsing

quality. This section focuses on the changes

made for the enhanced model. Specifically

1http://corpussearch.sourceforge.net
2http://www.compling.jp/ts

Figure 1: growth of phrase structure rules
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this was created with techniques from Johnson

(1998), Klein and Manning (2003) and Fraser

et al. (2013) among others, of:

1. eliminating discontinuous constituents

and (Section 4.1),

2. transforming and augmenting treebank

annotations (Section 4.2), and

3. following the extraction of phrase struc-

ture rules, lexical rules, and their fre-

quencies from the annotated parse trees,

markovising the grammar (Section 4.3).

Note that all curves of Figure 1 remain steep at

the maximum training set size of 12,375 trees,

suggesting more data would lead to more sig-

nificant growth. As a comparison, the treebank

grammar of Schmid (2006) extracted from the

Penn Treebank of English has 52,297 phrase

structure rules (enabling a labelled bracketing

F-score of 86.6%).

4.1 Discontinuous constituents

The Keyaki Treebank annotates trace nodes,

for example with relative clauses. But un-

like the Penn Treebank (Bies et al. 1995) trace

nodes are not indexed and typically appear

clause initially, with precise attachment points

unspecified since it is enough to assume that

constituents at the IP level are dependents of

the main verb of the clause. For trace nodes

within embedded contexts (cases of long dis-

tance dependency) it is the phrase level of at-

tachment for the trace node that is the relevant

indicator of the dependency. For the current

work we assume parse trees from which trace
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nodes are removed and aim to recognize dis-

continuous constituents in a post-processing

step, following for example Johnson (2001).

4.2 Transforming and augmenting

annotations

In addition to removing trace nodes, transfor-

mations and augmentations of the trees are

performed. Specifically interjection, punctu-

ation or parenthetical materials occurring at

the left or right periphery of a constituent

are moved to a new projection of the con-

stituent. There is also Parent Encoding, fol-

lowing Johnson (1998), which copies the syn-

tactic label of a parent node (minus the func-

tional information) onto the labels of its chil-

dren. Finally there are refinements to the POS

tags.

Refinements to the POS tags include the

P (particle) tag becoming either P-CASE, P-

CONJ, P-COORD, P-CP-THT, P-FINAL, P-

NOUN or P-OPTR depending on the func-

tional role of the particle and/or the syntac-

tic context in which the particle occurs. Verbs

are also split to inform information about the

clause of occurrence: VB-THT (verb with

CP-THT (clausal) complement), VB-DITRNS

(triggered by NP-OB2), VB-TRNS (triggered

by NP-OB1), VB-INTRNS (default encod-

ing).

In addition, the POS tags of the most fre-

quent particles,の,は,に,を,が,て,と,で,

も,か,から, etc., are marked with a feature to

identify the specific particle. For example,と

can be tagged as either P-CASE-と, P-CONJ-

と, P-COORD-と or P-CP-THT-と. This can

be seen as a restricted form of lexicalisation.

In the same way, the auxiliary verbsあっ,あ

り, ある, あれ, あろ, で and な are “lexi-

calised”, as is the negation markerず and cer-

tain punctuations, e.g., ‘。’. However, other

similar enrichments of the POS information

was found to hurt overall parsing performance.

Applying the above changes to the tree of

section 3 results in the following tree repre-

sentation:
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4.3 Markovisation

The Keyaki Treebank uses rather flat struc-

tures, particularly at the clause level, with

nodes having up to 31 child nodes. As Fraser

et al. (2013) note this causes problems be-

cause only some rules of that length appear

in the training data. This sparse data prob-

lem is solved by markovisation (Collins 1997),

which splits long rules into a set of shorter

rules. The following shows consequences to

our running example of markovising the rule

IP-MATˆTOP –> PPˆIP PPˆIP VB-INTRNS P-

CONJ-て VB2 AX2 AXD.
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The auxiliary symbols that are created en-

code information about the parent category,

the head child, the child that is generated next

and the previously generated child. Because

all auxiliary symbols encode the head cate-

gory, the head is selected by the first rule,

while being generated later. The markovisa-

tion strategy is currently set to transform rules

that occur less than 60 times in the training

data.

5 Parsing experiments

The treebank was randomised because of the

diverse nature of the treebank (see Table 1)

and a dataset of 1,300 trees was held-out for

testing and the remaining 12,375 trees were

used for training. In all evaluations, we used

the original Keyaki parse trees as gold stan-

dard and converted the parse trees generated

by our parser to the same format by undoing

the transformations and removing the augmen-

tations. Perfect segmentation was used for all
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Table 2: PARSEVAL results (results for sen-

tence lengths ≤ 40 in brackets)

Model precision recall F-score

Vanilla 65.73 (68.10) 67.92 (70.27) 66.81 (69.17)

Enhanced 79.97 (81.84) 80.61 (82.58) 80.29 (82.21)

evaluations, being necessary to obtain a PAR-

SEVAL score.

The results of parsing using the vanilla and

enhanced PCFG models on the test data are

given in Table 2, using the standard PARSE-

VAL measures (Black et al., 1991), i.e., values

for bracketing precision, recall, and F-score,

but for fully labelled evaluation only. Figure 2

shows learning curves for all sentences and for

sentence lengths ≤ 40. In contrast to the two

curves of the vanilla model, the two curves of

the enhanced model remain steep at the maxi-

mum training set size of 12,375 trees. Figure

3 shows coverage results for the models with

differing amounts of training data. The en-

hanced model offers high coverage early on,

a consequence of the markovisation. This also

explains some of the apparent lack of growth

or even loss in F-score, as F-score is only cal-

culated from valid parsings.

Figure 2: learning curves for all sentences and

sentence lengths ≤ 40
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6 Conclusion

This paper has presented a PCFG treebank

grammar for Japanese trained on the Keyaki

treebank. Parsing performance was enhanced

with Parent Encoding, reversible tree trans-

formations, refinement of treebank labels and

Markovisation. This establishes a significant

parsing baseline for Japanese, that appears to

Figure 3: coverage results
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be competitive with other attempts at con-

stituency parsing of Japanese, notably Tanaka

and Nagata (2013). Our results strongly sug-

gest that the enhanced parsing model would

benefit considerably from the availability of

more training data. More training data is ex-

pected to also enable improvements from a yet

more fine-grained label set.
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