Spinal TAG のための高速な構文解析

木曽 鉄男¹
 林 克彦²
 新保 仁¹
 松本 裕治¹
 ¹奈良先端科学技術大学院大学 情報科学研究科
 ²日本電信電話株式会社 NTT コミュニケーション科学基礎研究所

1{tetsuo-s,shimbo,matsu}@is.naist.jp
2hayashi.katsuhiko@lab.ntt.co.jp

1 はじめに

木接合文法 (Tree Adjoining Grammar; TAG) [7] は句 構造木を基本要素 (基本木) とし, 木に対する置換また は接合操作を繰り返し適用することで, 構文木を構成す る形式文法である. 近年, TAG の一種である spinal TAG による構文解析が高い解析精度を達成している [10, 1].

文献 [1] における spinal TAG では, 葉に単語を持ち, その単語が主辞となる句を表す前終端記号及び非終端 記号の Unary 系列 (spine) を基本木とする. そして, こ の基本木に対して, 2 種類の接合操作: sister adjunction と regular adjunction を行うことで解析を進める.

Spinal TAG の基本木は,構文木に対して主辞規則(例 えば[3])を適用した後に獲得される.図1に構文木の 例と,その構文木から獲得される基本木の例を示す. 図2に接合操作の例を示す.図では,接合される基本 木のすべての非終端記号に対して,前終端記号を始点 として,インデックス付けしている¹.本稿では@を 使って,このインデックスを明示する.

文献 [1] で提案された構文解析法は高い解析精度を 誇る一方で,計算量が $O(n^4G)$ (n は文長, G は文法の 大きさ) であり,実応用を考えた場合には現実的な計算 量とは言えない. そこで本稿では, spinal TAG に対す るより高速な構文解析法を提案する.提案法では,動的 計画法に基づく shift-reduce 法 [6] を spinal TAG へ拡 張することで,高精度かつ高速な解析を実現する². さ らに,構文解析の前処理として supertagging を行うこ とで,解析速度のさらなる高速化を試みる.

2 構文解析アルゴリズム

木接合文法に対する shift-reduce 法の状態は

$$[\ell, i, j, \sigma] : \pi \tag{1}$$

として定義できる. ℓはステップ数, σはスタック, i, j は スタック先頭要素のスパンを表す. π は動的計画法 [6] を適用するための予測前状態へのポインタ集合となる が, 提案法の理解には関係ないため, 説明を省略する. スタック要素 s は 3 つの変数を持つ集合で表す.

$$s = \langle HS, start, isRegular \rangle.$$
 (2)

HS は主辞となる基本木を表す変数である. start は HS が表す基本木への接合が可能な非終端記号の開始 位置を表す変数で,1節で導入した基本木上のインデッ クスを表す. is Regular は s を構築したアクションが regular adjunction であったかを表す2 値変数である³.

キューにセットされた入力文 $x_1 \dots x_n$ が与えられ たとき,提案手法の解析は公理 $[0,0,1,\epsilon]: \emptyset$ から始ま り,以下 6 つのアクションを使って解析を進め, finish によって最終状態へと至り終了する. 各アクションは 演繹推論規則を使って定義する.

 shift: キューの先頭から単語を一つ取り出し, 基本 木 h を割り当てて, スタックの先頭に積む.

$$\frac{\overbrace{[\ell,i,j,\sigma]:\pi}^p}{[\ell+1,j,j+1,\sigma|s_0]:\{p\}} \ .$$

ここでは、 $s_0.HS = h$, $s_0.start = @2$, $s_0.isRegular = false$ となる. startを最下層の 非終端記号の位置インデックス @2 としているの は、前終端記号への接合を禁止するためである.

¹ただし, regular adjunction の場合は, 接合操作時に, 接合される 非終端記号と同じ記号が新たに親となり, 構文木が構成されるため, 便宜上インデックスは変えていない.

²文献 [10] では, TAG に対する漸進的構文解析法を提案している が, 本研究とは異なる種類の TAG に基づくため, 以後議論しない.

³isRegular はバックトレースして構文木を構築する際, sister と regular adjunction を区別するために使われる.

 sister adjunction left: *s*₁.*HS* が示す基本木を, *s*₀.*HS* が示す基本木へと接合する. 接合する位 置は変数 *x* で表す.

$$p \in \pi \land s_0.start \le x \le height(s_0.HS)$$

$$\underbrace{\overbrace{[.,i,k,\sigma'|s_1'|s_1]:\pi'}^{p} \quad [\ell,k,j,\sigma|s_1|s_0]:\pi}_{[\ell+1,i,j,\sigma'|s_1'|s_1 \xrightarrow{s}^x s_0]:\pi'}.$$

ここで $s_1 \xrightarrow{s^x} s_0$ によってできる新たなスタッ ク要素の各変数は, $HS = s_0.HS$, start = x, isRegular = false となる. height(h) は基本木 h の高さを返す関数である.

 regular adjunction left: sister adjunction left とほぼ 同様の定義であり、次のようになる.

$$\underbrace{p \in \pi \land s_0.start \leq x \leq height(s_0.HS)}_{\substack{p \\ [.,i,k,\sigma'|s_1'|s_1]:\pi'}} \underbrace{[\ell,k,j,\sigma|s_1|s_0]:\pi}_{[\ell+1,i,j,\sigma'|s_1'|s_1 \xrightarrow{r^x} s_0]:\pi'}.$$

ここで $s_1 \xrightarrow{r}^x s_0$ によってできる新たなスタッ ク要素の各変数は, $HS = s_0.HS$, start = x, isRegular = true となる.

- sister/regular adjunction right: sister/regular adjunction left の操作を s₁ ←^x s₀, または, s₁ ←^x として逆の操作を行う. 定義は adjunction left の場合とほぼ同様なので省略する.
- finish: shift や adjunction をこれ以上適用できない 場合,

$$\frac{[2n-1,0,n+1,s_0]:\pi}{[2n,0,n+1,s_0]:\pi}$$

として,終了状態を導く.

提案法による解析例を図3に示す.

3 素性

紙面の都合上, 用いた素性は概略のみを示す. 基本 的な素性は文献 [11] で定義されている句構造解析の ための素性を参考にした. さらに, 文献 [1] の素性⁴を 参考に, 基本木に関する素性を定義した. ここで注意し たい点は, sister および regualr adjunction の操作時に は spine 中のどの位置に接合するかによって構文解析 に大きな影響を与える. そのため, 接合する側の基本

図 2: 接合操作の例. (a) sister adjunction (b) regular adjunction.

木の根の非終端記号, 接合される側の基本木の非終端 記号とその子の非終端記号の3つ組に関する素性セッ トを特別に "grammatical features" と呼ぶ.実験では, "grammatical features"を加えた場合と加えなかった場 合の精度への影響について議論する.さらに, スタック 中の基本木が regular adjunction で作られたかどうかを 示す 2 値素性 ("regular features" と呼ぶ)を追加し, こ の素性の精度への影響についても検証する.

4 実験および考察

4.1 設定

提案法の有効性を検証するために,構文解析で標準 的に用いられる英語の WSJ Penn Treebank を用いた. 先攻研究と同じデータ分割方法に従い,学習データにセ

⁴文献 [1] では, sibling や grand-parent といった高次の単語間の 係り受け関係の素性を利用しているが, 本研究ではこれらの素性は 利用していない.

	action	stack
1	shift	DT
		the
2	shift	NP
		DT NN
		the man
3	sister adj left	▼ NP ^{@2}
		DT NN
		the man
4	shift	NP PP
		NN IN
		man in
5	shift	NP PP
		NN IN DT
		 man in a
6	shift	NP PP
		NN IN DT JJ
		man in a gray
7	shift	NP PP NP
		NN IN DT JJ NN
		man in a gray suit
8	sister adj left	<u>NP PP</u> → NP ^{@2}
		I I I NN IN DT JJ NN
		 man in a gray suit
9	sister adi left	NP PP NP ^{@2}
		I I I I NN IN DT NN
		 mon in a suit
10	sister adi right	$\frac{\text{man m a surt}}{\text{NP PP}^{@2} \cdot \cdot}$
		NN IN NP
		 mon in NN
		111a11 111 1N1N 't
11	regular adi right	suit NP ^{@2} ≪
	regular aug right	NN PP
		man _I in
		111

図 3: shift-reduce 法による単語列 *the man in a gray suit* の解析例.

クション 2-21, 開発データにセクション 22, 従来法との 比較用にセクション 23 を用いた. TAG の基本木および 導出は文献 [1] の方法に従い, 学習データから獲得した. 開発データおよびテストデータは Stanford POS Tagger⁵

	適合率	再現率	\mathbf{F}_1
baseline	90.66	90.45	90.56
+ grammatical features	90.77	90.66	90.72
+ regular features	90.80	90.64	90.72

表 1: 異なる素性セットごとの開発データの解析精度 の比較. grammatical features, regular features を逐次的 に加えた場合の精度を表している.

	beam	\mathbf{F}_1	tokens/seconds
	16	87.22	1320
w/a DD	32	87.29	662
W/O DP	48	87.53	464
	128	87.66	185
	2	89.06	4306
/ DD	4	90.15	2285
W/ DP	8	90.63	1325
	16	90.72	752
	2	89.07	6989
w/ DP + supertagging	4	90.12	5181
	8	90.40	3896
	16	90.57	2183

表 2: ビーム幅と解析精度および解析速度の関係.

を用いて品詞付与を行った. 評価には EVALB⁶ を用い た. なお, 学習時, テスト時ともにビーム探索のビーム 幅を 16 に設定した. モデルの学習には violation-fixing perceptron, パラメータ更新の方法は max-violation を 用いた [5]. 最適な反復回数は開発データでの解析精度 により決定した.

4.2 素性の影響

各素性セットごとの開発データの解析精度を表1に 示す.表より、"grammatical features"を加えることで "baseline"に対して精度が向上していることが分かる. "regular features"を加えると再現率が低下するものの、 適合率が向上していることが分かる.

4.3 状態の結合の影響

解析時に同じステップでビームに含まれている等価 な状態⁷を結合する場合("w/DP")と結合しない場合 ("w/o DP")で別々にモデルの学習を行い,開発データ の精度への影響を調査した.

表2に,開発データに対して,ビーム幅を変えた時の 解析精度と解析速度の関係を示す.状態を結合しない 場合は,状態を結合する場合に比べて,約3から5近く 精度が低下していることが分かる.状態を結合しない 場合,ビーム幅を上げることで解析精度が向上してい

⁵http://nlp.stanford.edu/software/tagger.shtml

⁶http://nlp.cs.nyu.edu/evalb/

⁷ここでいう状態の等価性は文献 [6] に基づいている.

ることから,ビームに同じような解析結果が含まれて いて,状態の結合が精度に大きく寄与していることが 分かる.また,解析速度についても注目してみると,解 析時に等価な状態を結合することによって,精度が大 きく向上するだけでなく,精度を大きく犠牲にしない まま,高速に解析できていることが分かる.

4.4 Supertagging による高速化

提案法は shift 時に単語の品詞に対して割り当て可 能な基本木をすべて考えるため,基本木の候補数が解 析速度に大きく影響する.そこで,構文解析の前処理 として, supertagging を行い,あらかじめ各品詞に対し て K-best の基本木を割り当ててから,構文解析を行う ことで解析速度の向上が可能か検証した. supertagging の方法は文献 [5] をベースとしたビーム探索⁸を用い, モデルの学習には構文解析と同じ方法を用いた.素性 として,単語 unigram,品詞 unigram,品詞 bigram,基本 木 unigram および基本木 bigram を用いた.

テストデータにおける supertagging の精度は 94.43 であった. 表 2 に supertagging を行ってから構文解析 を行った場合の解析精度と解析速度を示す. なお, 解析 速度は, supertagging の速度と構文解析の速度の両方を 合わせた速度である. 表より, supertagging を行わない 場合 ("w/ DP") と比べて, 解析精度は 0.03 から 0.15 低 下が見られるが, 解析速度は 1.6 から 2.9 倍の高速化が 達成できていることが分かる.

4.5 従来法との比較

表3にテストデータにおける従来法との精度の比較 を示す.提案法はshift-reduce法に基づく方法として最 も高い精度として報告されている文献[11]と同等の精 度となっていることが分かる.また,提案法のビーム幅 を40としてテストデータを解析した場合でも,文献[1] の方法と比べてF値が0.6低いことが分かる.これは 文献[1]の方法と比べて,構文解析アルゴリズムとそ れに伴う素性が異なるためであると考えられる.実際, 文献[1]で用いられているsibling素性を入れて実験を 行ってみたが,精度向上は見られなかった.文献[1]で は,さらにgrand-parentの素性も使っているが,動的計 画法に基づくshift-reduce法の場合,grand-parentを入 れることは技術的に難しい.素性選択による更なる精 度向上については今後の課題である.

	適合率	再現率	\mathbf{F}_1
[†] Sagae & Lavie 06 [9]	88.1	87.8	87.9
Petrov & Klein 07 [8]	90.2	89.9	90.1
[†] 提案手法 (b=16)	90.6	90.2	90.4
[†] 提案手法 (b=16) + supertagging	90.5	90.2	90.3
[†] Zhu et al. 13 [11]	90.7	90.2	90.4
[†] 提案手法 (b=40)	90.6	90.3	90.5
Carreras et al. 08 [1]	91.4	90.7	91.1
Charniak & Johnson 05 [2]	_	-	91.4
Huang 08 [4]	-	-	91.7

表 3: テストデータにおける従来法との精度比較.[†]shiftreduce 法.

5 おわりに

本稿では、文献 [1] で提案された spinal TAG のため の動的計画法に基づく shift-reduce 法を提案した. 提案 法は、英語の構文解析タスクにおいて、shift-reduce 法 に基づく構文解析法の中で、最も高い精度として報告 されている構文解析法と同程度の精度を達成できるこ とが分かった. また、解析時に等価な状態の結合をする ことによって、精度が大幅に向上するだけでなく、より 小さいビーム幅で高速に解析できることが分かった. さらに、構文解析の前処理として supertagging を行う ことで、解析精度を大幅に犠牲にすることなく、解析速 度の高速化を達成できることが分かった.

参考文献

- Xavier Carreras, Michael Collins, and Terry Koo. TAG, dynamic programming, and the perceptron for efficient, feature-rich parsing. In *Proc. of CoNLL*, pp. 9–16, 2008.
- [2] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In *Proc. of ACL*, pp. 173–180, 2005.
- [3] Michael Collins. Three generative, lexicalised models for statistical parsing. In *Proc. of ACL*, pp. 16–23, 1997.
- [4] Liang Huang. Forest reranking: Discriminative parsing with nonlocal features. In *Proc. of ACL-HLT*, pp. 586–594, 2008.
- [5] Liang Huang, Suphan Fayong, and Yang Guo. Structured perceptron with inexact search. In *Proc. of NAACL*, pp. 142–151, 2012.
- [6] Liang Huang and Kenji Sagae. Dynamic programming for lineartime incremental parsing. In Proc. of ACL, pp. 1077–1086, 2010.
- [7] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. Handbook of Formal Languages, Vol. 3, pp. 69–124, 1997.
- [8] Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In Proc. of HLT-NAACL, pp. 404–411, 2007.
- [9] Kenji Sagae and Alon Lavie. A best-first probabilistic shift-reduce parser. In *Proc. of ACL*, pp. 691–698, 2006.
- [10] Libin Shen and Aravind Joshi. Incremental LTAG parsing. In Proc. of HLT-EMNLP, pp. 811–818, 2005.
- [11] Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and accurate shift-reduce constituent parsing. In *Proc.* of ACL, pp. 434–443, 2013.

443

⁸ビーム幅は6に設定した.