
言語処理学会 第20回年次大会 発表論文集 (2014年3月)

DGrep: A Pattern-matching Tool forDependency Trees

Eric Nichols Paul Reisert
Honda Research Institute Japan Co.Ltd. Tohoku University, Japan

e.nichols@jp.honda-ri.com preisert@ecei.tohoku.ac.jp

1 Introduction
Dependency parsing has become a keystone to much nat-

ural language processing, however, there is still a lack of
tools designed for pattern matching on dependency trees,
leading to much duplication of effort by programmers who
want to search or manipulate them. In this paper, we in-
troduce DGrep, a TGrep-inspired query language and tool
suite designed specifically for dependency trees. DGrep’s
key features include: query syntax that aims to be iso-
morphic to the target dependency tree; consistent query
composition semantics that allows intuitive query chain-
ing; default surface form matching without special syntax
to accommodate the lexically-driven nature of dependency
trees; and full query support over the chunks and tokens
of Cabocha’s Japanese dependency trees - including parts-
of-speech and other features. In this paper, we describe
DGrep’s query language and outline plans for its future de-
velopment. We plan to release DGrep to the research com-
munity in the near future.

2 Related Research
One of the earliest tools developed for querying tree-

banks is TGrep [13]. It provided a simple, grep-like
command line interface for searching Penn Treebank-style
bracketed phrase structure trees, and its query language
supported specification of parent, child, and sibling rela-
tions and searching with regular expression. Many of the
techniques that have been adopted by modern treebank
query languages originated in TGrep: it provided a mecha-
nism for marking nodes to print in search results and con-
verted treebanks to a cacheable form to improve search ef-
ficiency. TGrep is now defunct, but many of its features
were reimplemented in TGrep2 [15] and Tregex [8].

The simple CLI and robust feature set of TGrep and its
successors provide the blueprint for DGrep’s development:
our goal is to adopt the elements of TGrep that made it
successful and adapt them to searching dependency trees.

Another paradigm for searching phrase structure trees
is the search engine. This approach dates back to
TIGERSearch [5] The Linguist’s Search Engine [14], and
LPath [7], with recent instantiations in Fangorn [4]. Typ-
ically, these systems will index treebanks and allow users
to search for patterns by manually entering queries or by
constructing queries with a GUI-based editor.

MonaSearch [9] offers another approach to phrase struc-
ture tree search, with a query language implemented in
Monadic Second Order logic that permits some queries

that are not permitted in first-order-logic-based language,
such search for arbitrarily nested prepositional phrase
structures. By converting queries into tree automata,
MonaSearch claims linear time search is possible.

Recently, several tools that support querying over mul-
tiple treebank formats have been developed. PML-TQ
[16] converts phrase structure trees and dependency trees
to a single, XML-based markup language. INESS-Search
[11] extends TIGERSearch [5] to support general directed
graphs for querying the various structures in LFG tree-
banks. GrETEL [1] supports treebank search without re-
quiring queries to be entered in a domain-specific language.
Instead, users search for examples using a tree browser GUI
and edit the tree into a query.

Finally, a few tools that focus exclusively on searching
dependency trees have been developed. ChaKi [10] is a
GUI-driven corpus annotation tool for the Japanese lan-
guage. It is the only tool we know of besides DGrep that
supports full querying over Japanese morphological analysis
results and syntactic dependencies, however, our goals are
divergent: ChaKi aims to provide an easy to use annotation
environment to non-programmers and does not include a
CLI, while DGrep aims to provide a lightweight and effi-
cient CLI for large-scale text processing. Semgrex [2] is a
query language for semantic graphs produced by the Stan-
ford CoreNLP parser. ICARUS [3] is a dependency tree-
bank search tool with both a GUI and CLI. It supports the
CoNLL dependency parsing shared task format, and aims
to strike a balance between query language expressiveness
and tree visualization.

3 TheDGrepQuery Language
Before introducing DGrep’s query language, let us con-

sider its desiderata. Our motivation in developing DGrep is
to create a lightweight tool that can be used to preprocess
large collections of text for tasks like knowledge acquisi-
tion and information retrieval. Existing query languages for
phrase structure trees could be used to search dependency
trees in principle, however, because dependency trees tend
to gather more information into lexical nodes and represent
syntactic relations through edges, applying existing query
languages can be lead to verbose and unintuitive queries.
We want an intuitive query language that resembles the
trees it is querying over. Furthermore, we want the ability
to print the dependency paths between nodes in a match
in addition to subtrees. At the same time, because depen-
dency trees are highly lexical by nature, we want to make

― 165 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

mailto:e.nichols@jp.honda-ri.com
mailto:preisert@ecei.tohoku.ac.jp

it easy to search over the surface forms of words. Finally,
taking inspiration from TGrep, we want to develop a clean
command line interface with minimal dependencies and in-
stallation process.
3.1 Querying overNodes

DGrep currently supports searching Japanese de-
pendency trees produced by the dependency parser,
Cabocha[6]. Cabocha’s dependency trees consist of node
which are chunks, or sequences of tokens. Each token is
set of feature-value pairs. These features are explained in
detail in Section 3.4. For the examples in this section,
we use the dependency tree below. See Table 1 for the
example queries referenced throughout this section. The
first chunk in the tree,食堂で consists of the two tokens,
食堂 andで.

....食堂で ..美味しい ..つけ麺を ..食べて来た。
..shokudo de ..oishii ..tsukemen wo ..tabete kita

...

I ate delicious tsukemen at the dining hall.

DGrep defines the following operators over nodes:

Operator Meaning
A -> B A is a child of B
A <- B A is a parent of B
A ->> B A is a descendant of B
A <<- B A is an ancestor of B
A >: B A is only child of B
A <: B B is only child of A
A & B Both conditions A and B are met
A | B Either condition A or B is met
A - B A parent or child relation exists

between A and B
A -- B An ancestor or descendant relation

exists between A and B
!A All nodes that do not match

condition A

The following special node symbols are also supported:

Symbol Name Meaning
^ Root Matches the root node
_ Wildcard1 Matches any node

The wildcard is demonstrated in Table 1 Example 3.
3.2 Regular Expressions

DGrep also supports regular expression matching on
chunk surface form and token feature values. DGrep sup-
ports POSIX-compatible Java regular expressions with the
following syntax: /<regex>/. Table 1 Examples 1 and 8
demonstrate the use of regular expressions at the chunk
and token levels. By default, a chunk-level query is evalu-

1Using _ as a wildcard is a convention of the Scala programming lan-
guage.

ated as a regular expression search over the surface form of
the entire chunk that is represented by the node. Thus, the
two queries shown in Example 1 are equivalent.
3.3 CompoundQueries

DGrep evaluates queries from left to right and han-
dles compound queries by using the root nodes of in-
termediate query results to continue the query. Thus,
the query A -> B -> C is read as A depends
on B and B depends on C, is evaluated in the order of
((A -> B) -> C), and can be thought of as being decom-
posed into (A -> B) & (B -> C). As shown in Table 1
Example 5, the query (美味しい -> つけ麺を) -> 食べ
is equivalent to美味しい -> つけ麺を -> 食べ.

Parentheses can be used to change the order of evaluation
of a given query. Thus, the query A -> (B -> C) will be
read as A depends on C and B depends on C and can be thought of
as equivalent to (A -> C) & (B -> C). Table 1 Example 6
gives an example of how parentheses can be used to specify
multiple children with the same parent:
3.4 Querying over Tokens

DGrep supports full search over the token features in the
chunks composing Cabocha’s dependency trees. Features
can be accessed using the following feature aliases:

Feature Japanese English
pos 品詞 part-of-speech
pos1 品詞細分類 1 POS1
pos2 品詞細分類 2 POS2
pos3 品詞細分類 3 POS3
ctype 活用形 conjugation type
cform 活用型 conjugation form
baseform 原形 base form
orth 読み orthography
pron 発音 pronunciation

In addition to features, each token has a surface value
which may be searched. For example, queries of the form
{surface:麺}will result in searching at the token level for
a surface of麺. This differs from a query of麺 only which is
a query across the concatenation of all token surface forms
in a chunk.

For more information on the above features, consult the
Mecab Reference Manual2 and the Ipadic User Manual3.

Like chunk-level queries, token-level queries are also
evaluated from left to right. Parentheses may be used for
compound queries at the token level. DGrep offers the
ability to search on multiple tokens per chunk in order to
match specific conditions that could not be found with a
simple query alone. In order to achieve this, we introduce
the following syntax:

[{<feature>:<value>,...}
{<feature>:<value>,...} ...]

2http://mecab.googlecode.com/svn/trunk/mecab/doc/
index.html

3http://sourceforge.jp/projects/ipadic/docs/ipadic-2.
7.0-manual-en.pdf/en/1/

― 166 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
http://sourceforge.jp/projects/ipadic/docs/ipadic-2.7.0-manual-en.pdf/en/1/
http://sourceforge.jp/projects/ipadic/docs/ipadic-2.7.0-manual-en.pdf/en/1/

Examples of feature-level queries are given in Table 1 Ex-
amples 7 and 8.
3.5 BooleanOperators

Boolean operators & and | can be used on both chunk-
level queries and token-level queries. & indicates that mul-
tiple conditions must hold for a match to be found, while |
indicates one or more of a set of conditions is satisfactory.
In the event that multiple matches are found for a query
using |, each match is returned independently.
3.6 OutputModes

DGrep supports the following output modes:
• dependency paths: outputs the minimal dependency paths

for a specified query
• subtrees: outputs subtrees starting from the root node of

a resulting path from a given query
When a DGrep query finds multiple matches, each

match is returned independently. Table 1 Examples 3, 4,
and 7 show queries with multiple matches.

DGrep output can be displayed as plain text, XML, and
LaTeX dependency graphs4. All dependency graphs in this
paper were generated by DGrep. Matches can be printed
in color in the context of the full input sentence, or the
matching region alone can be printed.
3.7 Implementation

DGrep is implemented in Scala as a query library with
Java bindings and a command line interface. Developing in
Scala offered a number of benefits: we were able to rapidly
prototype in a type-safe functional programming-friendly
language which runs on the JVM, giving us access to a
large number of Java libraries and reasonable performance.
Scala’s support for functional programming allowed us to
implement the DGrep syntax in a composable manner us-
ing parser combinators, and it opens the door for exploring
query optimization techniques like memoization.

4 Conclusion
In this paper, we presented DGrep, a pattern-matching

tool for searching dependency trees. DGrep was designed
with the goals of creating lightweight, composable language
that is intuitive for dependency trees to support efficient
querying of Web-scale text. DGrep supports full search
over cabocha-formatted Japanese dependency trees – in-
cluding at the chunk- and token-level – and output of both
dependency paths and subtrees in plain text, XML, and La-
Tex dependency graphs. We plan to release DGrep to the
research community in the near future.

In future work, we plan to expand support for other
parsers, formats, and languages, and to conduct detailed
performance evaluation and explore areas of potential op-
timization. Implementing support for the CoNLL depen-
dency shared task format would enable comparison be-
tween DGrep and existing query tools and facilitate robust
profiling. Query rewriting to avoid inefficient formulations
and memoization to avoid redundant querying are potential
avenues of optimization. Because Web corpora are often

4LaTeX dependency graphs use the TikZ-dependency [12] package.

too large to index in advance, lazy methods of indexing on
demand as queries are made may also be beneficial.

Acknowledgments
This research was supported by Honda Research Insti-

tute Japan Co.Ltd. The authors would also like to thank
Professor Kentaro Inui (Tohoku University) for his invalu-
able feedback.

References
[1] Liesbeth Augustinus, Vincent Vandeghinste, and Frank Van Eynde.

Example-based treebank querying. In Proceedings of the Eighth Inter-
national Conference on Language Resources and Evaluation, 2012.

[2] Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall,
Chloe Kiddon, Bill MacCartney, Marie-Catherine de Marneffe,
Daniel Ramage, Eric Yeh, and Christopher D Manning. Learning
alignments and leveraging natural logic. In RTE ’07: Proceedings of the
ACL-PASCALWorkshop on Textual Entailment and Paraphrasing, 2007.

[3] Markus Gärtner, Gregor Thiele, Wolfgang Seeker, Anders
Björkelund, and Jonas Kuhn. Icarus – an extensible graphical
search tool for dependency treebanks. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 55–60, Sofia, Bulgaria, August 2013.

[4] Sumukh Ghodke and Steven Bird. Fangorn: A system for querying
very large treebanks. In Proceedings of COLING 2012: Demonstration
Papers, pages 175–182, Mumbai, India, 2012.

[5] Esther König, Wolfgang Lezius, and Holger Voormann.
TIGERSearch 2.1 user’s manual. 2003. http://www.ims.
uni-stuttgart.de/forschung/ressourcen/werkzeuge/
TIGERSearch/doc/pdf/manual.pdf.

[6] Taku Kudo and Yuji Matsumoto. Japanese dependency analysis using
cascaded chunking. In CoNLL 2002: Proceedings of the 6th Conference
on Natural Language Learning 2002 (COLING 2002 Post-Conference
Workshops), pages 63–69, 2002.

[7] Catherine Lai and Steven Bird. LPath+: A first-order complete lan-
guage for linguistic tree query. In Proceedings of the 19th Pacific Asia
Conference on Language, Information and Computation, 2005.

[8] Roger Levy and Galen Andrew. Tregex and Tsurgeon: tools for
querying and manipulating tree data structures. In Proceedings of the
fifth international conference on Language Resources and Evaluation, pages
2231–2234, 2006.

[9] Hendrik Maryns and Stephan Kepser. MonaSearch – querying lin-
guistic treebanks with monadic second order logic. In The 7th Inter-
nationalWorkshop onTreebanks and Linguistic Theories (TLT 7), Gronin-
gen, Holland, January 2009.

[10] Yuji Matsumoto, Masayuki Asahara, Kiyota Hashimoto, Yukio
Tono, Akira Ohtani, and Toshio Morita. An annotated corpus man-
agement tool: ChaKi. In Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation, Genoa, Italy, May 2006.

[11] Paul Meurer. INESS-Search: A search system for LFG (and other)
treebanks. In Proceedings of the LFG12 Conference, 2012.

[12] Daniele Pighin. The TikZ-dependency package. User manual,
version 1.1. 2012. http://ctan.math.utah.edu/ctan/
tex-archive/graphics/pgf/contrib/tikz-dependency/
tikz-dependency-doc.pdf.

[13] Richard Pito. TGREPDOC. Manual page for TGrep.
Linguistics Data Consortium, University of Pennsylania, 1994.
http://www.stanford.edu/~bresnan/128_2003-4/Docs/
tgrepdoc.1.pdf.

[14] Philip Resnik and Aaron Elkiss. The Linguist’s Search Engine: An
overview. In Proceedings of the ACL Interactive Poster andDemonstration
Sessions, pages 33–36, Ann Arbor, Michigan, June 2005.

[15] Douglas L T Rohde. TGrep2 user manual: Version 1.15. 2005.
http://tedlab.mit.edu/dr/Tgrep2.pdf.

[16] Jan Štěpánek and Petr Pajas. Querying diverse treebanks in a uni-
form way. In Proceedings of the Seventh International Conference on Lan-
guage Resources and Evaluation, Valletta, Malta, may 2010. European
Language Resources Association (ELRA).

― 167 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/TIGERSearch/doc/pdf/manual.pdf
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/TIGERSearch/doc/pdf/manual.pdf
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/TIGERSearch/doc/pdf/manual.pdf
http://ctan.math.utah.edu/ctan/tex-archive/graphics/pgf/contrib/tikz-dependency/tikz-dependency-doc.pdf
http://ctan.math.utah.edu/ctan/tex-archive/graphics/pgf/contrib/tikz-dependency/tikz-dependency-doc.pdf
http://ctan.math.utah.edu/ctan/tex-archive/graphics/pgf/contrib/tikz-dependency/tikz-dependency-doc.pdf
http://www.stanford.edu/~bresnan/128_2003-4/Docs/tgrepdoc.1.pdf
http://www.stanford.edu/~bresnan/128_2003-4/Docs/tgrepdoc.1.pdf
http://tedlab.mit.edu/dr/Tgrep2.pdf

Query Meaning Matches

1 食べ
/食べ/

Matches all chunks with a surface form
containing食べ食堂で ..美味しい ..つけ麺を ..食べて来た。...

2 つけ麺を -> 食べ Matches all paths in whichつけ麺を
depends on食べ食堂で ..美味しい ..つけ麺を ..食べて来た。...

3 _ -> 食べ Matches all paths between食べ and its
children食堂で ..美味しい ..つけ麺を ..食べて来た。...

....食堂で ..美味しい ..つけ麺を ..食べて来た。...

4 !食 Matches any chunk whose surface does
not contain食食堂で ..美味しい ..つけ麺を ..食べて来た。...

....食堂で ..美味しい ..つけ麺を ..食べて来た。...

5 (美味しい -> つけ
麺を) -> 食べ

Matches all paths where美味しい
depends onつけ麺を andつけ麺を
depends on食べ食堂で ..美味しい ..つけ麺を ..食べて来た。...

6 食堂で -> (つけ麺
を -> 食べ)

Matches all paths where食堂で andつけ
麺を bothつけ麺を depend on食べ食堂で ..美味しい ..つけ麺を ..食べて来た。...

7 {pos:名詞} Matches all chunks containing a token
with part-of-speech名詞食堂で ..美味しい ..つけ麺を ..食べて来た。...

....食堂で ..美味しい ..つけ麺を ..食べて来た。...

8 {orth:/ん$/} Matches all chunks which contain a token
whose orthography ends withん食堂で ..美味しい ..つけ麺を ..食べて来た。...

Table 1: Example queries for the sentence食堂で美味しいつけ麺を食べて来た。I ate delicious tsukemen at the dining hall.

― 168 ― Copyright(C) 2014 The Association for Natural Language Processing.
All Rights Reserved.　　　 　　 　　 　　　 　　　　　　　　　　

	Introduction
	Related Research
	The DGrep Query Language
	Querying over Nodes
	Regular Expressions
	Compound Queries
	Querying over Tokens
	Boolean Operators
	Output Modes
	Implementation

	Conclusion

