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1 Introduction

Statistical Natural Language Processing (NLP) is
now facing various “Big Data” challenges. In ma-
chine learning (ML)-based text classification (TC),
the current front-line of “Big Data” is millions of
training and test documents with hundred of thou-
sands, or even millions, of labels and features.

In recent years, in addition to supervised statis-
tical learning approaches, many studies have been
carried out with showing success in adopting unsu-
pervised methods for learning continuous word em-
bedding [2, 3], from unlabeled texts. Word embed-
ding (WE) features have actively studied on word
analogies, word similarity, chunking, and named en-
tity recognition. WE vectors are also used in TC
[4, 7], but there remains the task of investigating
how WE features can be infused into existing sta-
tistical features in multi-label hierarchical classifica-
tion. This paper gives a shed on this issue to infusing
WE into the large-scale deep architecture learning.

We apply a vector space model (VSM) in the deep
architecture called Semantically-Augmented Statisti-
cal VSM (SAS-VSM) [7] for information access sys-
tems, especially for hierarchical text classification
(HTC) [5, 6].

2 SAS-VSM

The SAS-VSM [7] that merges together statistical
VSM and word-co-occurrence-based continuous em-
bedding vectors. The architecture of SAS-VSM for
a document space can be represented as:

SAS-VSM = Statistical-VSM || Semantic-VSM,

where || denotes the concatenation of two different
VSMs. An SAS-VSM feature vector �x(d) for a doc-
ument d is,

�x(d) =
(
�xStat(d), �xSem(d)

)
,

where �xStat(d) is a statistical feature vector and
�xSem(d) is a semantic feature vector. In the above
formulation of SAS-VSM, where the Statistical-VSM
denotes term weightings based on discrete weights of

terms for a corresponding document d. A Statistical-
VSM vector is an �xStat(d) =

(
xStat
1 (d), ... , xStat

M (d)
)
.

For term ti, �x
Stat(d) is as:

�xStat(d) =

{
f (ti) if ti ∈ d

0, otherwise
, (1)

where f (ti) is a term weighting function represent-
ing any weighting approach for term ti. In con-
trast, a Semantic-SVM vector is an �xSem(d) =
(xSem

1 (d), ... , xSem
N (d)) for document d. Using a WE

matrix V, �xSem(d) is defined as:

�xSem(d) = �xStat(d)V. (2)

WE matrix V is an M×N matrix with the vocabu-
lary size M and the dimensionality N of WE vector.
To infuse continuous WE vectors into existing dis-
crete weights by rewriting Eqn. 1 as:

�xStat′(d) = �xStat(d)× SCE(d), (3)

where SCE(d) is centroid-means-embedding,

SCE(d) =
1

N

N∑
i=1

SCEi(d). (4)

The SCE weight of a certain term ti for a given doc-
ument d can be represented as:

SCE(d) = �A(d)V = (SCE1(d), ..., SCEN (d)) (5)

�Ai(d) =

{
1, if ti ∈ d

0, otherwise
, (6)

where �A is an M -dimensional row vector. For single-
label classification, SAS-SVM [7] introduced Gaus-
sian distribution based scaling function to scale each
new generated weight. The hyper parameter �λ for
document d,

λi(d) =
1√
2πσ2

d

exp

(
−
(
xSem
i (d)− μd

)2
2σ2

d

)
, (7)

where the mean μd and standard deviation σd.
Therefore the new generated vector from Eqn. 2 as:

�xSem′
(d) = �λ(d)◦

(
�xStat′(d)�V

)
, (8)

where ◦ denotes the element-wise multiplication of
two row vectors.
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3 WE in Deep Learning

In NLP, WE is the feature learning method
where words from the vocabulary are mapped to
continuous-valued vector of real numbers in low di-
mensional space. WE features can be useful as input
to classification models or as additional features to
enhance existing systems. The motivation for ex-
ploiting WE features in the deep architecture learn-
ing can be attributed to two main properties. First,
in generating a more information-rich VSM, many
documents in the training or test set for large-scale
dataset may not share enough information to classify
the test set properly. Second, there is a demand for
document representation to integrate semantic VSM
into statistical VSM for multi-label HTC.

3.1 SAS-VSM in HTC

We introduce a simple solution for SAS-VSM in
large-scale HTC. In SAS-VSM in deep learning, we
generate the Statistical- and Semantic-VSM based
on Eqns. 1 and 2 respectively. In Eqn. 1, to avoid
excessive effects of large feature values in the term
weighting function f (ti), we normalized the feature
value as:

t̄i =
ti

ti + 1
. (9)

In Eqn. 2, we can see that new updated augmented
features for document d are incorporated with dis-
crete and continuous weights. It is also notice-
able that, the new generated weight gets a larger
weight than existing normalized statistical vectors.
We therefore scale the semantic weight as:

xSem
i (d) =

xSem
i (d)

QStat(d)
, (10)

where for a certain document d, QStat(d) =

�xStatT �xStat. The SAS-VSM in HTC is free from in-
fusing continuous WE vectors into existing discrete
weights as stated in Eqn. 3.

4 Edge-based Learning in Deep
Architechture

4.1 Sampling: Bottom-up Manner

Since only leaf categories are assigned to data, we
propagate training samples from the leaf level to the
root in the class hierarchy. Fig. 1 illustrates propa-
gation of documents in a hierarchy consisting of six
categories A-F. In this figure sample x1 is assigned
to categories D and E as well as x2 to D, and x3 to F.
Samples are propagated in a directed acyclic graph
(DAG) in the bottom-up manner.

4.2 Learning in Deep with DCD-
SVM: Top-down Manner

Based on the propagation of training samples in
the hierarchy, we train classifiers for each edge of
the hierarchy where each edge is coupled with a bi-
nary class classifier using the one-against-the-rest ap-
proach. In Fig. 2 at node B, during the bottom-up
propagation where x1 and x2 are assigned to node
B. Since edge-based learning is in concern, therefore
model MBD is trained in the hierarchy as to classify
both x1 and x2 to D; whereas model MBE is trained
as to classify x1 to E but not x2 to E.
In large-scale hierarchical learning, each node is

propagated with hundreds of thousands, or even mil-
lions of samples. Therefore, for efficient learning
and to adjust the effect of positive-negative sam-
ples imbalance in a certain node in the hierarchy,
we present a dual coordinate decent for linear sup-
port vector machines (DCD-SVM) [1] with L1-loss
function. For randomly chosen (�xi, yi), DCD-SVM
updates the weight vector as,

�w ← �w + (αi − α′
i)yi�xi, (11)

where �w is a weight vector. The optimization process
starts from an initial point �α ∈ R

l and generates a
sequence of vectors {�αk}∞k . We refer to the process
from �αk to �αk+1 as an outer iteration. In each outer
iteration we have l inner iterations, so that sequen-
tially α1, α2, ..., αl are updated. For updating �αk,i to
�αk,i+1, must find the optimal solution as:

αk,i+1
i = min

(
max

(
αk,i
i − ∇if

(
�αk,i

)
�xT
i �xi

, 0

)
, C

)
,

(12)
where C > 0 is a penalty parameter and set to 0.5
based on our previous results. ∇if is the ith com-
ponent of the gradient ∇f . To evaluate ∇if

(
�αk,i

)
,

∇if (�α) = yi �w
T�xi − 1. (13)

In Eqn. 6, we move to index i+1 with updating αk,i
i ,

if and only if the projected gradient ∇P
i f

(
�αk,i

) �= 0
and satisfy the following conditions,

∇P
i f (�α) =

⎧⎪⎨
⎪⎩
∇if (�α) if 0 < αi < C,

min (0,∇if (�α)) if αi = 0,

max (0,∇if (�α)) if αi = C.

(14)
In Eqn. 5, α′

i is the current value and αi is the value
after the updating. In the inner iterations of a certain
node, in each iteration we maintain the updates of a
weight vector �w in a balanced stochastic way, by ran-
domly chosen one from positive samples (�xi, yi ∈ +1)
and in next iteration the other from negative samples
(�xi, yi ∈ −1).
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Figure 1: Bottom–up of
training data.

Figure 2: Top–down
learning.

Figure 3: Top–down
classification.

Figure 4: Global Prun-
ing.

4.3 Classification: Top-down Manner

Fig. 3 illustrates top-down classification of test data
�x. First, �x is classified to B and C, based on the
decision by MAB(�x) and MAC(�x), respectively. The
decision is made by:

Gpc(�x) = �wpc.�x+ bpc. (15)

To adjust the effect of positive-negative sample im-
balance, we set a bias β. When Gpc(�x) > β, �x is
classified from parent category p to child category
c. When both GAB(�x) > β and GAC(�x) > β are
satisfied, �x is classified into both B and C. Note that
the standard bias term bpc is automatically tuned for
each edge in the training stage.

Along with the HTC, we keep track of confidence
scores of the classification. The output value of a
classifier is converted to [0, 1] range:

σα(x) =
1

1 + exp(−αx)
. (16)

when x reaches a leaf node n, the confidence score
cα(x, n) is calculated as follows:

cα(x, n) =
∏

(n1,n2)∈E

σα(Gn1n2(x))), (17)

where E is the set of edges that x has followed in the
path from the root to leaf n. α is set to 2 from our
previous study. After the classification of x through-
out the hierarchy, we prune unlikely classes for x. We
set the global threshold θ. When there are multiple
nodes assigned to x, if c(x, n)<θ, the assignment of
x to n is removed. Figure 4 illustrates the global
pruning.

5 Experiments

We target the standard HTC datasets prepared for
the third edition of PASCAL challenge on Large-
Scale Hierarchical Text Classification (LSHTC1) for
Wikipedia medium dataset (WMD). We employ

1http://lshtc.iit.demokritos.gr/LSHTC3_CALL

#Training 456,866
#Test 81,262
#Distinct features 346,299
#Categories(Hierarchy) 50,312
#Leaf categories 36,504
#Edges 65,333

Table 1: Statistics of Wikipedia medium data

sofia-ml2 package for the experiments with Pega-
sos, SGD-SVM, PA, ROMMA, logreg, and logreg-
pegasos. We assessed the training and classification
time using a single Xeon 3.0GHz core with 396GB
memory. The gold standard labels for the test data
of WMD are not publicly open. Therefore, we eval-
uate our systems based on LSHTC evaluation site3.
Table 1 show the statistics of WMD. In this paper,
to represent the Semantic-VSM, we consider a con-
text prediction global vectors (GloVe) model [3] for
learning WE. Table 2 shows the result of DCD-
SVM with different dimensional embedding vectors
(EV). we set β = −0.5 means that data classified
into negative side to some extent are passed to the
child node. This means that some incorrect assign-
ments are kept in the candidate sets. However, most
of the incorrect classification are removed afterwards
during the pruning stage. When β = −0.5, θ =
0.39, and EV=100, we obtained the best accuracy
44.92%. Table 3 shows the scores with several ef-
ficient ML algorithms with our edge-based classifi-
cation approaches. Table 4 summarizes our result
with compare to the top four systems using WMD.
The result shows that our systems outperformed over
the other systems that have been participated in the
LSHTC3 challenge.

2http://code.google.com/p/sofia-ml/
3For convenience, we call the official evaluation matrices

Accuracy(Acc), Example-based F1 measure (EBF), Label-
based Macro-average F1 measure (LBMaF), Label-based
Micro-average F1 measure (LBMiF), and Hierarchical F1 mea-
sure (HF).
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Learning C β θ Acc EBF LBMaF LBMiF HF
DCD-SVM + EV=0 0.5 –0.5 0.39 44.52 49.68 26.64 49.78 70.86
DCD-SVM + EV=50 0.5 –0.5 0.38 44.65 49.85 26.85 49.98 70.97
DCD-SVM + EV=100 0.5 –0.5 0.39 44.92 50.08 26.99 50.26 71.13
DCD-SVM + EV=200 0.5 –0.5 0.38 44.72 49.92 26.81 49.99 71.00

Table 2: Results of DCD-SVM with different dimensional embedding vectors

Learning C β θ Acc EBF LBMaF LBMiF HF
DCD-SVM + EV=100 0.5 –0.5 0.39 44.92 50.08 26.99 50.26 71.13
Pegasos 0.5 –0.5 0.32 44.23 49.48 26.69 49.66 70.76
SGD-SVM 0.5 –0.5 0.32 44.19 49.38 26.41 49.57 70.72
PA 0.5 –0.5 0.49 40.05 45.12 25.50 45.27 66.73
ROMMA 0.5 –0.5 0.15 38.27 43.24 22.96 43.62 56.10
logreg 0.5 –0.3 0.14 36.90 42.35 15.44 42.71 66.88
logreg-pegasos 0.5 –0.5 0.14 36.89 42.55 16.44 42.96 66.82

Table 3: Comparison of efficient ML methods

Name Acc EBF LBMaF LBMiF HF
DCD-SVM + EV=100 44.92 50.08 26.99 50.26 71.13
arthur (1st) 43.82 49.37 26.74 49.39 70.92
coolvegpuff (2nd) 42.91 48.24 25.07 47.79 68.92
TTI (3rd) 42.00 47.71 28.35 47.25 69.22
chrishan (4th) 41.17 47.68 24.54 41.87 67.66

Table 4: Comparison with top four LSHTC3 participants

6 Conclusion

We investigated the effectiveness of exploiting WE
in the deep architecture learning for multi-label clas-
sification problem. The DCD-SVM and SAS-VSM
as well as with different embedding vector sizes can
significantly enhance the HTC task. In every cases
w.r.t the evaluation metrics, the DCD-SVM with
SAS-VSM outperformed LSHTC3’s top-group sys-
tems. Possible ideas for future work would be to
conduct experiments with SAS-VSM on very large
scale multi-label HTC for Wikipedia large datasets4.
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