
JLM - Fast RNN Language Model with Large Vocabulary

Jiali Yao, Marco Fiscato, Katsutoshi Ohtsuki Xinjian Li

Microsoft Carnegie Mellon University
jiayao@microsoft.com xinjianl@andrew.cmu.edu

marco.fiscato@microsoft.com

katsutoshi.ohtsuki@microsoft.com

Abstract

 The language model is a key to many tasks like

machine translation, speech recognition, and input

method. While neural network language model shows

better accuracy and scalability to a wider context, the

cost to get the probability of next word is non-trivial.

Moreover, eastern Asian languages like Japanese and

Chinese can easily have a large vocabulary over 100K

words to cover the most frequently appeared tokens.

In this paper, a fast RNN model named JLM1 with a

hybrid optimization is proposed. The experiment on

BCCWJ Japanese corpus shows a 50x speed up during

inference with decoder and up to 90% model size

reduced without significant perplexity change.

1 Introduction

Statistical language model estimates the probability of a

sequence by calculating the probability of the next word

giving the context.

𝑃(𝑤0, … , 𝑤1) = ∏ 𝑃(𝑤𝑖|𝑤𝑜 , … , 𝑤𝑖−1)

𝑛

𝑖=0

 (1)

The counted based language model calculates the

probability of the next word by counting the frequency of

such a context with and without the next word.

𝑃(𝑤𝑖|𝑤0, … , 𝑤𝑖−1) =
𝑐𝑜𝑢𝑛𝑡(𝑤0, … 𝑤𝑖−1)

𝑐𝑜𝑢𝑛𝑡(𝑤0, … , 𝑤𝑖)
 (2)

It is hard to enumerate all the combinations. In practice,

applications will only use tri-gram to avoid exponential

growth of storage. Neural network language model with

word embeddings, as an alternative, has been studied

(Bengio, et al. 2003, Mikolov, et al. 2010). In recent years,

on standard benchmarks, RNN language model achieves

the state of art perplexity (Jozefowicz, et al. 2016) and

outperforms the traditional non-parametric count based

language model (Kneser and Ney 1995).

However, comparing to count based n-gram language

model, the probability of next word is not a simple table

lookup. Instead, the next word probability distribution is

computed from context each time. The computation

1 https://github.com/jiali-ms/JLM

involves a matrix operation of vocabulary size and a final

softmax over the vocabulary-sized logits. Techniques like

hierarchical softmax (Mnih and Hinton 2008), target

sampling (Jean, et al. 2017), and noise contrast estimation

(Gutmann and Hyvärinen 2010) can reduce the training

time of large vocabulary language model by advanced

sampling. But inference time cannot simply be reduced. A

fast RNN language model is vital for real-time applications

to run in various clients like mobile or PC without GPU

acceleration. Also, such applications have a limited budget

for model size, sometimes, only a few Mb is allowed for

software distribution.

Japanese and Chinese have an additional requirement

for high-performance language model as the input is not

always segmented words. Conversion or decoding is an

essential part. Widely used Viterbi decoder has 𝑂(𝑁 ×
𝐷2) complexity, where 𝑁 is number of candidates with

same pronunciations, and 𝐷 is the number of steps.

Comparing to an English next word prediction task, a

Japanese conversion task is way more expensive.

2 JLM Framework

In this section, an E2E training and decoding framework

JLM is proposed. It focuses on inference speed up and

optimization on model size.

There are various choices for RNN model. We choose

standard LSTM (Hochreiter and Schmidhuber 1997) as the

basic benchmark for the improvements. Other architectures

include text CNN (Kim 2014), char RNN (Karpathy 2015),

and the char aware LSTM (Kim, Jernite, et al. 2015).

However, for Japanese language, Kanji char in Unicode is

much more than the alphabet in English. Seq2seq model

(Sutskever, Vinyals and Le 2014) can also convert Romaji

sequence directly to Kanji sequence. But this method lost

flexibility on error correction from speech recognition

pipeline or user input.

A single layer LSTM with the word as a basic unit is still

a practical choice for a high-performance language model

as it captures long distance context while not bringing too

much architecture complexity to the model.

The word LSTM model can compute the probability

distribution over vocabulary 𝑉 as follows. For a sentence

― 456 ―

言語処理学会 第24回年次大会 発表論文集 (2018年3月)

Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

𝑤0, 𝑤1 , … , 𝑤𝑛 and 𝑤𝑡 ∈ 𝑉 . For each time stamp 𝑡 ,

lookup the input embedding 𝑊𝑖𝑛 ∈ ℝ𝑑𝑖𝑛∗|𝑉| for word 𝑤𝑡.

The lookup operation produces the word vector 𝑥𝑡 for 𝑤𝑡 .

Standard LSTM cell is then applied to update internal state

as equation(3)

𝑓𝑡 = 𝜎(𝐻𝑓 ∗ ℎ𝑡−1 + 𝐼𝑓 ∗ 𝑥𝑡 + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝐻𝑖 ∗ ℎ𝑡−1 + 𝐼𝑖 ∗ 𝑥𝑡 + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝐻𝑜 ∗ ℎ𝑡−1 + 𝐼𝑜 ∗ 𝑥𝑡 + 𝑏𝑜)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝐻𝑔 ∗ ℎ𝑡−1 + 𝐼𝑔 ∗ 𝑥𝑡 + 𝑏𝑔)

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

𝐻𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡)

 (3)

where 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡 are forget gate, input gate, and output gate

at timestamp 𝑡. 𝐻, 𝐼, 𝑏 are trainable parameters in the

LSTM model.

 𝑦𝑡 = 𝐻𝑡 ∗ 𝑊𝑜𝑢𝑡 (4)

𝑃(𝑤𝑖|𝑤0, … , 𝑤𝑖−1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑡) (5)

The hidden state then projects to a |𝑉| size logics with

output embedding 𝑊𝑜𝑢𝑡 ∈ ℝ𝑑𝑜𝑢𝑡×|𝑉| . And finally, the

probability distribution is calculated from softmax with

logits 𝑦𝑡 . To better describe the performance in

experiments, we name the computation in equation (3), (4),

(5) as LSTM cell, projection, softmax stages respectively.

2.1 Embedding optimization

For standard LSTM, major parameters are the vocabulary

size embeddings 𝑊𝑖𝑛 ∈ ℝ𝑑𝑖𝑛×|𝑉| and 𝑊𝑜𝑢𝑡 ∈

 ℝ𝑑𝑜𝑢𝑡×|𝑉| . Reducing the number of parameters in these

two embeddings can shrinks the generated model size and

reduces the amount of matrix operations required.

2.1.1 Embedding sharing

Similar words with close input embeddings should have

similar probabilities in next word prediction distribution

(Press and Wolf 2017). It is a common practice to tie these

two embeddings together.

𝑊𝑖𝑛 = 𝑊𝑜𝑢𝑡 (6)

For the case where 𝑑𝑖𝑛 is 256 and 𝑑𝑜𝑢𝑡 is 512, the

number of parameters saved is more than a half.

2.1.2 Variable size embeddings

Word with low frequency has less appearance and requires

less information to be captured in word embedding (Chen,

Grangier and Auli 2015). The words in the vocabulary can

be divided into different zones regarding to their frequency.

Each of the zones will use only part of the embedding. The

algorithm is called differentiated softmax (D-Softmax).

𝑒 = 𝐻 ∗ 𝑀

𝑒 = (𝑒0, 𝑒1, … , 𝑒𝑛) (7)

𝑦 = (𝑒0 ∗ 𝑊0
, 𝑒1 ∗ 𝑊1

, … , 𝑒𝑛 ∗ 𝑊𝑛
)

In projection phase, the hidden state is converted to an

embedding size vector 𝑒 by 𝑀 ∈ ℝ𝑑𝑜𝑢𝑡×𝑑𝑖𝑛 . The vector

𝑒 is treated as a concatenation of embeddings of different

a zone. Low frequency zones are smaller in size and saves

the time for matrix operation. Note that 𝑊𝑖 ∈ ℝ
𝑑

𝑒𝑖×|𝑉𝑖|
,

|𝑉| = ∑ |𝑉𝑖|, and 𝑑𝑜𝑢𝑡 = ∑ |𝑑𝑒𝑖|.

 A variation to the differentiated softmax, named D-

softmax* (Grave, et al. 2017) keeps the original embedding

by projecting each zone with a small matrix as equation

shows.

𝑦 = (𝑒 ∗ 𝑃0 ∗ 𝑊0, … , 𝑒 ∗ 𝑃𝑛 ∗ 𝑊𝑛) (8)

where 𝑒 ∈ ℝ1× 𝑑𝑜𝑢𝑡, 𝑃𝑖 ∈ ℝ
 𝑑𝑜𝑢𝑡×𝑑

𝑒𝑖 . We compared the

performance of both methods in the experiment.

2.1.3 Embedding compression

The trained weights can be further compressed to save

model size or even runtime memory footprint. Methods

like network pruning (Wen, et al. 2016) and quantization

(Chen, et al. 2015) greatly reduce the size of the model

without loss accuracy for certain tasks. (Shu and

Nakayama 2017) proposed a method that can compress

model more than 90% using codebook. It assumes similar

words do not require the tiny differences in the long vector

to capture. Any embedding can be approximated with 𝑀

embeddings in a codebook 𝐶.

𝑥(𝐶𝑤) = ∑ 𝑥(𝐶𝑤
𝑖)

𝑀

𝑖=1

 (9)

Applying this method to language model requires a pre-

trained model to start with. After the embeddings are

compressed with the codebook, use the original model to

refine the rest of the parameters.

2.2 Decoder optimization

The decoder is a vital part of speech recognition and input

where observations are decoded from the hidden states. In

language model, the search space is dominated by the

different words with the same reading.

The top 5 readings for Japanese is listed in the following

table. The search space is too big to be effective for a

decoder.

Table 1. Top popular readings in BCCWJ corpus.

テン マン イチ ニ ゴ

10228 7173 7161 6117 5813

― 457 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

2.2.1 Beam search

It is common to assume the possible path are from the best

subpaths. Beam search help regularize the search space to

O(B × D × N) where B is the beam size. The inference

required is fixed O(B × D) times.

2.2.2 Batch decoding

An important trick in decoding is batching. The underline

matrix library takes a batch of prediction task just as a

matrix with one more dimension. Instead of doing next

word prediction for each path, concatenate all the

prediction in the current subpaths will accelerate the speed

several times.

3 Experiment

In this section, we analyzed performance of all the

optimizations implemented the JLM in detail.

3.1 BCCWJ Corpus

BCCWJ 2 (Balanced Corpus of Contemporary Written

Japanese) is a corpus with various source and represent the

current written Japanese. The corpus disk vol2 contains a

segmented format in short unit words. We parsed the

format and build a lexicon that has each word as

Display/Reading/POS, e.g. “言語/ゲンゴ/名詞-普通名詞-

一般”. The corpus has 127M tokens and 5.8M sentences.

It contains 611K words in above definition. The token

coverage with top frequent words is analyzed as a reference

to mark unknown words. We choose 50K and 100K top

frequently used words as the vocab with word embeddings

in the experiments.

Table 2. Token coverage with selected words

Selected vocab size Token coverage

10K 91.0%

50K 97.3%

100K 98.7%

3.2 Experiment setup

The training is done with TensorFlow in Nvidia 1080 GPU

card. The trained weights are then dumped. The inference

performance is measure with numpy on a machine with

Intel E5 CPU. The matrix operation acceleration relies on

the underline BLAS library. We believe it is comparable to

other solution like Eigen with C++.

For language model evaluation, the standard LSTM

with a medium size embeddings 256 and hidden size 512

is chosen as the baseline (LSTM-base). we compared the

overall performance among the LSTM-base, the shared

embedding version (Tie-embedding), the differential

softmax (D-softmax), and the variation of differential

softmax (D-softmax*). The D-softmax has the

segmentation to corpus as 12%, 18%, 70%. And the

2 http://pj.ninjal.ac.jp/corpus_center/bccwj/en/

embedding sizes are 200, 100, 50 each section accordingly.

Since the D-softmax has much fewer parameters than

baseline, we also created a LSTM in small size (LSTM-S)

with the same number of parameters to D-softmax.

3.3 Language model evaluation

Figure 1. The validation perplexity drops as training epochs. The

x-axis is the epochs. Numbers in y-axis are perplexity. The

experiment is done with a 50K vocabulary size.

The experiments show that advanced optimization like

tie-embedding, D-softmax, and its variation can reach the

similar perplexity with LSTM baseline. LSTM-S instead

cannot converge to a low perplexity as others. It proves that

simply reducing the hyperparameters cannot lead to an

optimized language model with good perplexity.

We then tested the inference speed for each model by

taking the average of 100 times next word prediction. The

LSTM cell is the recurrent part that computes the next

hidden state. It is stable for various kinds of vocabulary

size. Its speed is dominated by the hidden and embedding

sizes. The projection instead is the most time-consuming

stage and sensitive to size of vocabulary.

Table 3. Average inference time (ms) for 50K vocab.

 LSTM-

base

Tie-

Embedding

D-

softmax

D-

softmax*

LSTM cell 0.535 0.523 0.755 0.426

projection 9.832 5.168 1.531 1.461

Softmax 0.8 0.9 0.73 0.66

Total 11.167 6.591 3.016 2.547

Table 4. Average inference time (ms) for 100K vocab.

 LSTM-

base

Tie-

Embedding

D-

softmax

D-

softmax*

LSTM cell 0.507 0.544 0.663 0.419

projection 18.744 9.708 2.886 3.002

softmax 0.214 0.16 0.15 0.151

total 19.465 10.412 3.699 3.572

40

45

50

55

60

65

1 2 3 4 5 6 7 8 9 10

LSTM-base

Tie-embedding

D-softmax

D-softmax *

LSTM-S

epochs

ppl

― 458 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

The results in the above tables show that increasing the

vocabulary size will linearly increase the inference time

cost. With D-softmax, the inference time is about 5-6 times

faster than baseline. We notice that the D-softmax* has a

smaller embedding size and outperforms the D-softmax.

Table 5. Overall comparison of quality and performance.

 perplexity

model size

(mb)

Inference

(ms)

 50k 100k 50k 100k 50k 100k

LSTM-base 40.8 46.0 156.5 306.7 11.7 19.5

Tie-emb 40.7 45.9 56.9 107.1 6.6 10.4

D-softmax 42.6 47.2 22.9 38.1 3.0 3.7

D-softmax* 42.6 47.3 21.5 36.7 2.5 3.6

Comp-emb 54.0 10.49

Finally, the perplexity, model size, and inference speed

are listed together in table 5. The model size can be reduced

by 86% and 88% for 50K and 100K with D-softmax*. It

also has a correlation with the inference speed up. The

embedding compressed experiment (Comp-emb) based on

Tie-embedding result finally gain a 93% model size

reduction. However, its perplexity it not yet optimized. It

is useful for the cases where perplexity can be sacrificed.

3.4 Evaluation with decoder

The overall inference speed with the decoder is compared

between the LSTM baseline and the D-softmax*. We use

an example sentence “きょうはいいてんき”. It has 10

frames including a sentence start.

Table 6. Decoding time comparison in seconds.

 LSTM-base D-softmax*

 Batch No-batch Batch No-batch

Beam 1 1.2 (10) 1.107(10) 0.19(10) 0.2 (10)

Beam 10 2.1 (10) 9.5 (86) 0.41 (10) 1.7 (86)

Beam 50 2.4 (10) 47.1 (397) 0.92 (10) 7.8 (397)

The number in the parentheses are the times that

inference is called. Since batch will make one call each

frame, the number is constantly 10. An optimized batch D-

softmax* is 50x faster than no-batch LSTM baseline with

beam width 50.

4 Conclusion

The work shows for large vocabulary language model,

standard RNN model like LSTM is not sufficient for

product requirements. Optimizations to reduce the final

projection phase is the key to reduce the cost. Further

optimization on CPU cache and multi-core parallelism may

accelerate inference speed more.

References

Bengio, Yoshua, R´ejean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. "A Neural Probabilistic

Language Model." Journal of Machine Learning

Research 3:1137–1155.
Chen, Welin, David Grangier, and Michael Auli. 2015.

Strategies for training large vocabulary neural

language models. arXiv preprint arXiv:1512.04906.

Chen, Wenlin, James T. Wilson, Stephen Tyree, Kilian Q.

Weinberger, and Chen Yixin. 2015. "Compressing

neural networks with the hashing trick." ICML.

Grave, Edouard, Armand Joulin, Moustapha Cissé, David

Grangier, and Hervé Jégou. 2017. "Efficient softmax

approximation for GPUs." ICML.

Gutmann, Michael, and Aapo Hyvärinen. 2010. "Noise-

contrastive estimation: A new estimation principle for

unnormalized statistical models." PMLR. 9:297-304.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. "Long

short-term memory." Neural computation 1735--1780.

Jean, Sébastien, Kyunghyun Cho, Roland Memisevic, and

Yoshua Bengio. 2017. "On Using Very Large Target

Vocabulary for Neural Machine Translation." CoRR.

Jozefowicz, Rafal, Oriol Vinyals, Mike Schuster, Noam

Shazeer, and Yonghui Wu. 2016. "Exploring the Limits

of Language Modeling." arVix eprint

arXiv:1602.02410.

Karpathy, Andrej. 2015.

http://karpathy.github.io/2015/05/21/rnn-

effectiveness/.

Kim, Yoon. 2014. "Convolutional Neural Networks for

Sentence Classification." EMNLP.

Kim, Yoon, Yacine Jernite, David Sontag, and Alexander

M. Rush. 2015. "Character-Aware Neural Language

Models." AAAI.

Kneser, Reinhard, and Hermann Ney. 1995. "Improved

backing-off for m-gram language modeling." ICASSP.

Mikolov, Tomas, Martin Karafiát, Lukás Burget, Jan

Cernocký, and Sanjeev Khudanpur. 2010. "Recurrent

neural network based language model."

INTERSPEECH. 1045-1048.

Mnih, Andriy, and Geoffrey E. Hinton. 2008. "A Scalable

Hierarchical Distributed Language Model." NIPS.

Press, Ofir, and Lior Wolf. 2017. "Using the Output

Embedding to Improve Language Models." EACL.

Shu, Raphael, and Hideki Nakayama . 2017. Compressing

Word Embeddings via Deep Compositional Code

Learning. arXiv preprint arXiv:1711.01068.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014.

"Sequence to Sequence Learning with Neural

Networks." arVix eprint arXiv:1409.3215.

Wen, Wei, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Li Hai. 2016. "Learning structured sparsity in deep

neural networks." NIPS.

― 459 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.

