
 

 

Evaluating Rinna’s Mind-reading Feature by Self-playing  

Xianchao Wu+ and Huang Hu* 
+ Microsoft Development Co., Ltd 

 Shinagawa Grand Central Tower, 2-16-3 Konan Minato-ku, Tokyo 108-0075 

xiancwu@microsoft.com 
* Graduate School of Software and Microelectronics, Peking University  

No.5 Yiheyuan Road, Haidian District, Beijing 100871 

tonyhu@pku.edu.cn 

1 Introduction 

In this paper, we introduce the detailed evaluation 
experiments for a simple “mind-reading” feature 
for an emotional chatbot, Rinna (Wu et al. 2016). 
This “mind-reading” feature works as the follow-
ing way. First, the user is asked to think one topic 
word or a role (or, named entities, such as a fa-
mous personal name) and that topic word is un-
known to Rinna (suppose Rinna has a large-scale 
role list yet Rinna does not know user’s current 
choice). Then, Rinna tries to guess the topic word 
stored in user’s mind by asking a sequence of 
questions, such as “Is your role a male or a fe-
male?”. Based on user’s responses such as “yes”, 
“no”, or “not sure”, Rinna will consequently se-
lect the next question to ask until the candidate 
role is clear enough (such as the first candidate’s 
probability is extremely larger than other candi-
dates) or some termination conditions are met 
(such as a maximum number of questions of 20). 
In particular, the selection of the next question is 
based on user’s answer to the former question and 
the existing prior ranking of the questions as well 
as mutex relations among questions. Utilizing no 
more than 20 questions (we also name this feature 
Q20), Rinna tackles user’s mind by delivering the 
correct answer.  
    Figure 1 illustrates a real-world example for 
Rinna’s Q20 mind-reading feature. Initially, user 
triggers this feature by typing “q20”. Then, user is 
asked to think one role in his/her mind. When the 
user says “ready”, Rinna starts to ask questions 
and receives user’s answers of “yes”, “no” or “not 
sure”. The questions are ranked alike selecting a 
feature for splitting a note into subtrees in deci-
sion-tree algorithms (Quinlan, 1986), so that some 
target function is optimized. In our case, we first 
select questions that are at the “top” of the deci-
sion tree that is supposed to bring a maximum in-
formation improving by separating the roles into  

                                                 
* Work done when Huang Hu was an internship student in Microsoft. 

o 

 
Figure 1. An example for Rinna’s Q20 mind-reading. 

User 
q20

Think one famous people, Rinna can  

read your mind 😊 

Ready!
Q1: Is your role virtual? 

Yes
Q2: Is your role a male? 

Yes
Q3: Is your role from Japanese Cartoon? 

Yes
Q4: Is your role a student? 

Yes
Q5: Is your role an athlete of sports balls? 

No
Q6: Is your role's hair black? 

No
Q7: Is your role's hair golden? 

No
Q8: Is your role' hair brown? 

Yes
Q9: Does your role have sisters or brothers? 

Yes
Q10: Did your role kill people? 

Yes
Q11: Is your role related to vampire? 

No
Q12: Does your role drive robots? 

Yes
Q13: Did your role go to the outer space? 

Yes
Q14: Is your role with wavy hair? 

No
Q15: Does your role have a sister? 

Yes
Q16: Does your role revenge? 

No
Q17: Does your role frequently ware white clothes? 

No
Got that, your role is Kira Yamato, right? 

Yes, Rinna, you are so smart!

― 1235 ―

言語処理学会 第24回年次大会 発表論文集 (2018年3月)

Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.



 

 

equally two groups. Also, the selection and user’s 
answer of the former question determines the con-
sequent ranking of the next question and the rank-
ing of candidate roles. In Figure 1, Q1 has a key-
word of “virtual”, which influences Q3 having 
“Japanese Cartoon” with a quite close relation. 
Through receiving user’s feedbacks of a list of 
keywords (underlines in Figure 1), the “key-value” 
attributes of one role is filled and the role is deter-
mined. This process is alike jigsaw puzzles, each 
question being taken as one piece of figure.   
    Besides employing decision tree ideas for rank-
ing questions and roles, we can also take this as a 
gaming process between the user and Rinna. Our 
target is clear, to build a chatbot that is able to read 
users’ mind with a high accuracy. The actions that 
Rinna can take is to select a next question from 
the candidate question list or show a candidate 
role from the candidate role list. The final reward 
for Rinna is user’s feedbacks (“yes” or “no”) for 
Rinna’s final guessed roles. On the other hand, the 
actions for users include (1) selecting one role be-
forehand, (2) answering “yes”, “no”, or “not-sure” 
to Rinna, and (3) providing a final feedback to 
Rinna on her guess. Based on this analysis, we 
propose a self-playing pipeline by referring ideas 
included in (Silver et al., 2017) and (Sutton and 
Barto, 2018), with one “bot” acts as “questioning 
bot” and the other “bot” acts as “answering bot”, 
for evaluating the accuracies of our Q20 feature 
using entropy-based question and role ranking al-
gorithms (Wu et al., 2018).  

2 Self-Playing Pipeline 

Function1: selfPlaying(num) //num is the number for 
self playing 
1. Q20_feature = initialize(); //load data into 

memory, initialize the prior probabilities of ques-
tions and candidate roles; 

2. List<Role> refRoles = weightedRandom (Q20_fea-
ture.roles, num); 

3. foreach refRole in refRoles: 
4.     onePlay(Q20_feature, refRole); 
 
Function2: initialize() 
1. Q20_feature.roles = loadRoles(rolesFile); 
2. Q20_feature.questions = loadQuestions(qFile); 
3. Q20_feature.rightProbs = loadRightProbs(rFile); 
4. Q20_feature.qmutex = loadQMutex(qmFile); 
5. return Q20_feature; 
 
Function3: weightedRandom(roles, num) 
1. Hashtable num2idx; 
2. pscores = 0; 
3. for (idx=0;idx<len(roles);idx++): 

4.     pscores2 = pscores + roles[idx].pscore; 
5.     for (i=pscores;i<pscores2;i++): 
6.         num2idx[i] = idx; 
7.     pscores=pscores2; 
8. outRoles = []; 
9. for (i=0; i<num; i++): 
10.     anum = random(0, pscores) //a random number 

in the range of [0, pscores) 
11.     outRoles.append(roles[num2idx[anum]]); 
12. return outRoles; 
 
Function4: onePlay(Q20_feature, refRole) 
1. session = []; 
2. for (i=0; i<20; i++): 
3.     q = selectQuestion(Q20_feature.questions, ses-

sion); //session assists “question bot”’s next ques-
tion selection 

4.     a = selectAnswer(refRole, q); //”answer bot” de-
termines what to answer (“yes”, “no”, or “not 
sure”) 

5.     session.append([q,a]); 
6.     if (max(softmax(Q2_feature.roles.pscore)) > 

0.6): 
7.         break; 
8. guessedRole = argmaxrole{softmax(Q2_fea-

ture.roles.pscore)}; 
9. if refRole == guessedRole: 
10.     return “succeed”; 
11. else: 
12.     return “failed”; 

Figure 2. Self-playing algorithm. 
 
Figure 2 describes the self-playing algorithm we 
are using for Q20 accuracy and robustness evalu-
ation. We lists four functions here in which (1) 
selfPlaying() is the major function, (2) initialize() 
takes the responsibility of loading necessary files 
to the memory, such as the list of roles, questions, 
the probabilities of users’ historical selections and 
the mutex relations among questions, (3) 
weightedRandom() samples out the reference 
roles (which are only known to the “answer bot” 
and blind to the “question bot”, i.e., Rinna) based 
on prior degrees of popularities, and (4) onePlay() 
that simulates one session of game playing by al-
ternatively calling the “question bot” for selecting 
the next question and then calling the “answer bot” 
for selecting the (reference) answer to answer that 
question. From the “answer bot”’s point of view, 
the reference role is known so that that answer can 
be a mixture distribution of the reference answer 
with a random noise to testify the “robustness” of 
the intelligence of Rinna. When the number of 
questions exceeds 20 or when one candidate role’s 
normalized probability (softmax function is used 
for normalization, Line 6 in onePlay()) is larger 

― 1236 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.



 

 

than a threshold, we stop the session and returns 
the guessed result. When the guessed result is 
identical with the reference role, the simulation 
succeeds.  
    Briefly, the data structure for our Q20 feature 
includes four tables, (1) the “Role” with names 
such as “Kira Yamato” (Figure 1), prior scores 
(pscore) obtained from search engine (such as 
Bing), and reference answers for each question; 
(2) the “Question” table with question names such 
as “Is your rule virtual?” (Figure 1); (3) the 
“rightProbs” table that stores users’ selections of 
“yes”, “no”, and “not sure” for one question i for 
one role j; and (4) the “Mutex” table that stores 
relations alike “yes-yes” of two questions, such as 
“Is your role from Japanese Cartoon?” and “Is 
your role virtual?”. (Wu et al., 2018) describes the 
detailed definitions of these four tables.    
    The selectQuestion() method used in Figure 2 
is exactly the entropy-based question ranking al-
gorithm as described in Equation (1) in (Wu et al., 
2018) for computing weight qi. We skip the details 
here. We mainly focus on how to add noise to the 
“answer bot”. Figure 3 gives the answer selection 
algorithm with noisy allowed. The noisy here is 
basically to simulate those users’ not sure answers 
since “not sure” brings no information gain for 
helping to rank the next question or current candi-
date roles. Extremely, we can also return “no” (or 
“not sure”) when the reference answer is “yes” 
with a noisy probability. These two noisy can be 
easily integrated. 

Function5: selectAnswer(refRole, q) //q is a question to 
be answered 
1. rightP = refRole[q, ‘yes’]; //the probability that q is 

answered ‘yes’ in “rightProbs” and by referring 
reference answer; 

2. wrongP = refRole[q, ‘no’]; //the probability that q 
is answered ‘no’ in “rightProbs” and by referring 
the reference answer; 

3. notsureP = 1 – rightP – wrongP; 
4. noise = 0.1; //or other values, such as 0.05, 0.2 and 

so on 
5. maxP = max(rightP, wrongP, notsureP); 
6. return (maxP == rightP) ? (rand() > noise ? 

‘yes’:‘not sure’/’no’): (maxP == wrongP)?(rand() > 
noise? ‘no’:‘not sure’/’yes’):‘not sure’; 

Figure 3. select answer algorithm. 

3 Experiments 

In our initial model, we selected Chinese as our 
test language and collected 10,633 famous people 
and virtual characters (such as from Japanese Car-
toons) all around the world. We collected 1,800 

questions. During a year-period of playing, we 
collected 27.5 million times of plays in which we 
obtained a top-1 prediction accuracy of 67.3%, in 
which 47.4% required 20 turns and the other 
52.6% could terminate in an early stop. We first 
start our self-playing evaluation by adding no 
noisy information to obtain an upper bound of the 
accuracy and session length (number of questions 
asked by the “question bot” to conclude the role). 
    Figure 4 depicts the accuracy curve for a 
100,000-time simulation of self-playing without 
adding noise to the reference answers. From the 
figure we can observe that the accuracy tends to 
convergence at around (0.954, 0.956) after 5,000 
times. After that, the diversity of the accuracy 
tends to be trivial. Also, note that the final accu-
racy at the range of 0.955 is impressive and proves 
the effectiveness of the self-playing framework 
for Q20 measuring. Furthermore, the accuracy al-
ready reaches 0.954 at 3,000-time simulation, 
0.949 at 2,000-time simulation, and 0.947 at 
1,000-time simulation. All these results show the 
steady of the model under reference answers. In 
terms of speed, we can finish around 5,000 times 
of self-playing in one hour. 
 

 
Figure 4. 100,000-time simulation accuracy. 
 

session length wrong  ratio correct  ratio 

9 3 0.1% 0 0.0% 

10 11 0.2% 29 0.0% 

11 35 0.8% 162 0.2% 

12 53 1.2% 564 0.6% 

13 52 1.2% 1681 1.8% 

14 69 1.6% 3472 3.6% 

15 50 1.1% 5663 5.9% 

16 97 2.2% 8285 8.7% 

17 135 3.0% 10544 11.0% 

18 86 1.9% 11159 11.7% 

19 24 0.5% 11108 11.6% 

20 3826 86.2% 42892 44.9% 

Table 1. Session length for the 100K self-playing. 

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0 20000 40000 60000 80000 100000

accuracy without noisy answers

― 1237 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.



 

 

    Table 1 lists the session length for the correct 
and wrong simulations. For the correct side, 
44.9% sessions need 20 questions to finish and the 
remaining 55.1% can terminate in an early stage. 
On the other hand, wrong predictions mostly 
(86.2%) terminates after costing 20 questions and 
only 13.8% stopped before that. We also manually 
analyze the wrong cases and compare the pre-
dicted roles with the reference roles. For almost 
all the cases, we found that there are close rela-
tions between the guessed roles and the reference 
roles, such as “Jinping Xi” (chairman of China) 
for the reference role and “politician” for the 
guessed role. We believe that the 20 questions 
could not distinguish these roles due to their inter-
nal close relations. One possible solution to this 
problem is to introduce novel questions from sep-
arable keywords of these roles for a clearer distin-
guishing.  
 

noise 
Accu-
racy1 

Accu-
racy2 

avg. wrong answer 
in "succeed" 
(left=Accuracy1, 
right=Accuracy2) 

avg. wrong an-
swer in "fail" 

0 0.951 0.957 0 0 0 0 

0.05 0.821 0.593 0.8 0.5 1.5 1.4 

0.1 0.641 0.298 1.5 0.9 2.4 2.3 

0.15 0.471 0.147 2.1 1.4 3.4 3.1 

0.2 0.313 0.069 2.8 1.8 4.2 3.9 

0.25 0.200 0.030 3.4 2.3 5.1 4.8 

Table 2. Accuracies of self-playing with noise, 
with a total self-playing account of 5,000 for 

each noise configuration. 
 
    Table 2 lists the accuracies of self-playing with 
noises taking values of from 0 to 0.25 (Figure 3) 
of changing from sure reference answers of “yes” 
or “no” to “not sure” (Accuracy1) and switching 
“yes” with “no” (Accuracy2) to stop transferring 
information to the “question bot” side. From the 
table, we observe that the accuracies drop signifi-
cantly as the noisy answers are included more and 
more, yielding accuracies of from 0.951 to 0.200 
(Accuracy1) and of from 0.957 to 0.030 (Accu-
racy2). Specially, we compute the average wrong 
answers respectively in the “succeed” and “fail” 
sessions, knowing that when there are averagely 
0.8 to 1.5 wrong answers, Accuracy1 is at a level 
of 0.821, and when there are averagely 1.5 to 2.4 
wrong answers, Accuracy1 is at around 0.641. On 
the other hand, Accuracy2 deteriorates even faster. 
Averagely 0.5 to 1.4 wrong answers will cause an 
accuracy drop of from 0.957 to 0.593. These ac-
curacies (0.641 in Accuracy1 and 0.593 in Accu-

racy2) are the closest to the real-world user play-
ing accuracy of 67.3% with 27.5 million sessions. 
Easy to see that there are nearly 2 questions were 
answered “not sure” which were supposed to ob-
tain a clear “yes” or “no” answer. This also sup-
plies a way of figuring out the too rare questions 
to avoid users’ answering of “not sure” in the real-
world Q20 feature of Rinna. Extremely, when 5 of 
the 20 questions are answered “not sure”, the ac-
curacy of the “question bot” is at 0.200. 

4 Conclusion 

We have presented a simple role-oriented mind-
reading feature for our chatbot, Rinna (Wu et al., 
2016), with million-level users. We achieved a 
top-1 accuracy of 67.3% under 27.5 million time 
playing. We describe the self-playing algorithm in 
this paper to estimate the accuracies of the “ques-
tion bot” according to the changes of the noise in-
formation (for simulating users’ wrong answers). 
We report results that are helpful for further im-
proving the robustness of our “mind-reading” fea-
ture in the future.  We believe that our proposed 
ideas (together with the details described in (Wu 
et al., 2018)) and solutions are helpful for (1) im-
proving the interestingness of real-world people’s 
interaction with virtual chatbots, and (2) extend-
ing novel pipelines of constructing user profiles 
by dynamically selecting related questions for de-
termining which products they really want in sce-
narios of product recommendation. 

References 

Silver, David; Schrittwieser, Julian; Simonyan, Karen; Anto-
noglou, Ioannis; Huang, Aja; Guez, Arthur; Hubert, 
Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian; 
Chen, Yutian; Lillicrap, Timothy; Fan, Hui; Sifre, Lau-
rent; Driessche, George van den; Graepel, Thore; Hassa-
bis, Demis. Mastering the game of Go without human 
knowledge. 2017. Nature. 550 (7676): 354–359.  

Quinlan, J. R., (1986). Induction of Decision Trees. Machine 
Learning 1: 81-106, Kluwer Academic Publishers. 

Richard S. Sutton and Andrew G. Barto. Reinforcement 
Learning: An Introduction. 2018. The MIT Press. 

Xianchao Wu, Huang Hu, Momo Klyen, Kyohei Tomita, 
Zhan Chen. Q20: Rinna Riddles Your Mind by Asking 20 

Questions. 言語処理学会 2018. 

Xianchao Wu, Kazushige Ito, Katsuya Iida, Kazuna Tsuboi, 

Momo Klyen. りんな：女子高生人工知能. 言語処理

学会 2016. 

― 1238 ― Copyright(C) 2018 The Association for Natural Language Processing.
All Rights Reserved.


