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1 Introduction

Understanding events expressed in text is important in
many natural language understanding tasks such as di-
alogue systems, question answering, discourse under-
standing, and information extraction. Natural language
sentences and events exhibit hierarchical structure [8, 1].
This hierarchy can be defined in terms of specificity.
General events can be considered as parent events to the
more specific events. For instance, the event “person eats
food” can be considered as the parent event to “John ate
an apple” (see Figure 1 for more examples).

Capturing this kind of hierarchy is important in many
applications such as causality recognition. For example,
if we have the hierarchy for these events; “eat some-
thing”, “eat food”, and “eat apple”. It is enough to only
know that eat something causes someone to be full.

Previous work in event understanding [18, 23, 17, 9,
14, 5] use distributed representational of events in Eu-
clidean space. In the recent work, it has been demon-
strated that hyperbolic space is more suitable for learn-
ing representations for data which exhibit some kind
of hierarchical structure such as nouns, social, semantic
and complex networks [3, 15, 1, 12].

However, embedding events into non-Euclidean space
has not yet been explored very well. Some previous
work explored embedding words into other spaces to
represent specificity of concepts [15]. Dhingra et al. [6]
extend Nickel and Kiela’s 2017 [15] work to learn sen-
tence encoder that can embed sentences into hyperbolic
space by using an unsupervised Skip Thought-based ob-
jective [20]. However, the extrinsic evaluation, e.g. sen-
timent classification, results do not show significant im-
provement over Euclidean space-based encoder. In addi-
tion, they do not analyze the learned embeddings deeply.
They try to learn hierarchical structure exhibited in the
data implicitly. However, before going into fully unsu-
pervised approaches, we believe that we should explore
the properties of learned event embeddings with explicit
supervision of hierarchical structure. Specifically we ex-
plore the following research questions:
1. Can hyperbolic embedding, proposed for non-

Figure 1: Event hierarchy in-terms of specificity

structured entity (i.e. word), be adopted for structured
entity (i.e. event)?

2. Does hyperbolic event embedding capture specificity
of events?
We explore [15]-like approach, where the model is ex-

plicitly informed what concepts form a hierarchy. The
contribution of our work can be summarized as follows:
•This is the first study to explore event embeddings
learned with explicit supervision of event hierarchy.

• Our experiments demonstrate that hyperbolic event
embeddings learned with explicit supervision capture
the hierarchical nature of events.

• We show that, even without explicit supervision of
word-based conceptual hierarchy, the learned embed-
ding captures the hierarchy of words.

• We also show that learned hyperbolic event embed-
dings generalize well to unseen events.

2 Preliminaries

2.1 Word embeddings in hyperbolic space

Next, we describe word embeddings in hyperbolic space
as presented by [15]. Hyperbolic geometry is the geom-
etry you obtain by assuming all the postulates of Euclid,
except the fifth one, which is replaced by its negation.
That is, in hyperbolic geometry there exist a line l and
a point P not on l such that at least two distinct lines
parallel to l pass through P .

In a regular tree, the number of children at each node
grows exponentially with the distance from the node. In
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hyperbolic space, the circumference and the area of the
circle is proportional to the sinh of the radius and the
cosh of the radius, respectively. This exponential rela-
tionship with the radius makes hyperbolic space more
suitable for embedding trees. A regular tree can be eas-
ily embedded in 2-dimensional hyperbolic space. How-
ever, previous work [15, 21, 6], has shown that as the
dimension of the hyperbolic embedding increases, the
performance on downstream tasks improves.

Of the many hyperbolic space models, Poincarés ball
model is the more suitable model for representational
learning in neural networks as it is more suitable for
gradient-based optimization. Poincarés ball model can
be defined as unit ball, Bd =

{
x ∈ Rd|∥x∥ < 1

}
, were

the distance between two points u and v is given by;

d(u,v) = arcosh
(
1 + 2

∥u− v∥2

(1− ∥u∥2) (1− ∥v∥2)

)
(1)

To learn Poincaré embeddings,Θ = {θi}ni=1, for a set
of symbols E = {ei}ni=1, we need to define an objective
function, L(Θ), that minimizes the hyperbolic distance
between semantically similar objects. Then, we need to
optimize:

Θ′ ← argmin
Θ

L(Θ) s.t. ∀θi ∈ Θ : ∥θi∥ < 1 (2)

[15] optimizes this equation using Riemannian Stochas-
tic Gradient Descent (RSGD) [2]. In this work, we use
the re-parameterization technique proposed by [6], de-
scribed in section 2.2. In RSGD-based optimization, used
by [15], it is possible that some embeddings can lie out-
side the Poincarés ball. Therefore, it is necessary to
project such embeddings back in the Poincarés ball dur-
ing each update. However, with re-parameterization
technique [6], the projection is not necessary as the re-
sulting embedding vectors always lie in the Poincarés
ball. As a result of this, we can make use of any available
optimizer such as Adam [11]. In addition, it was shown
that training using re-parameterization converges faster
while offering comparable results, in a similar task set-
ting, to the work by [15].

2.2 Parametric Poincaré Embedding

Given event ei and its embedding e(s), we compute:

v = ϕdir(e(s)), v =
v
∥v∥

,

p = ϕnorm(e(s)), p = σ(p),

where ϕdir and ϕnorm are arbitrary parametric functions,
whose parameters are learned during training. We then
obtain hyperbolic embedding θ = pv.

3 Hyperbolic Event Embeddings

3.1 Model

We use the re-parametrization technique described in
section 2.2. Our approach is event encoder-agnostic. For
e(s), we can employ any kind of sentence encoder that
outputs fixed-length vector. We use LSTM as an event
encoder. For projections, we use the following paramet-
ric function: ϕdir(x) = WT

1 x, ϕnorm(x) = WT
2 x We

expect that event embeddings will be organized in hier-
archical manner such that more general events will ap-
pear closer to the origin and more specific events will
appear towards the edge.

3.2 Training Objective

To learn representationsΘ = {θi}ni=1 for a set of events
E = {ei}ni=1, we define a loss functionL(Θ, d) that min-
imizes the hyperbolic distance (1) between embeddings
of related events.

L(Θ, d) =
∑

(u,v)∈D

log e−d(u,v)∑
v′∈N (u) e

−d(u,v′)

where u and v are composition vectors from the sentence
encoder. It is worth noting that because the hyperbolic
distance is symmetrical, the loss function does not use
any directions of edges between u and v.

4 Experiments & Results

4.1 Training Data

In our experiment, we use part of the entailment
datasets, (KS2016), introduced by Kartsaklis and
Sadrzadeh [10] which consist of 70 subject-verb-object
(SVO) pairs, (u, v) were v is a more general event of
u. From each event u in the dataset, we use WordNet
hyponyms to get more specific events. In addition, we
use WordNet hypernyms to get more general events.

Using the aforementioned method we get 12,803 pos-
itive SVO pairs, (u, v), and a vocabulary of 6027 unique
words. This dataset, D, is arranged in the form D =
{(u, v)|v is the general event of u}. For each positive
SVO pair (u, v), we generate negative example by pair-
ing u with randomly sampled SVO triplet. We split the
dataset into train/test in the ratio 4:1.

4.2 Model Settings

Our model consists of three layers. The first layer of our
event encoder is an Embedding layer. This layer uses
pretrained 100-dimensional glove vectors [16]. The sec-
ond layer is an LSTM layer with 64 units, and the third
and final layer is the Projection Layer. The projection
layers projects to 128-dimensional Poincaré embedding
space. We use the Adam optimizer [11] for optimization.
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Norm Event

0.262 - 0.271 physical object accent abstract entity
0.271 - 0.279 organism see abstract entity, somebody show abstract en-

tity, living thing determine abstract entity, abstract en-
tity show abstract entity, abstract entity verbalise noesis,
physical object transfer abstract entity

0.279 - 0.288 woman experience abstract entity, idea fit abstract entity,
person accept abstract entity, group verbalize abstract en-
tity

0.288 - 0.296 human action give abstract entity, event show abstract
entity, physical object show cognition

0.296 - 0.305 physical object change abstract entity, artifact represent
abstract entity, psychological feature cerebrate abstract
entity, physical entity interact substance, psychological
feature move abstract entity, animate thing obtain ab-
stract entity
Table 1: Events with the lowest norms

Norm Event

0.99621 - 0.99623 police catch ripper, term tell law of reciprocal pro-
portions, mutawa’een skirmish statutory offence

0.99623 - 0.99626 term tell first law of motion, police catch jailbird, po-
lice collect suffering, term tell third law of motion,
acute glossitis indicate cause

0.99626 - 0.99628 flush indicate cause, police catch collaborator, dowa-
ger wholesale legal jointure, police torpedo crime

0.99628 - 0.9963 police lump evidence, fever indicate cause, police
catch rustler

0.9963 - 0.99632 hypoglycemia indicate cause, term slip in concept,
police catch stickup man

Table 2: Events with the largest norms

4.3 IntrinsicQualitative Evaluation

We compare the norms of events from the resulting em-
bedding. More general events are supposed to have
lower norms than more specific events because general
events are embedded closer to the origin. The results of
this experiment are show in table 1 and table 2. Addition-
ally, figure 2 shows the visualization of the 2D Poincaré
event Embedding. For visual clarity, wemanually picked
only a few events from the KS2016 dataset. The resulting
embedding capture the hierarchical nature of events, it
places more general events closer to the origin.

In addition, we also compare the word level norms.
Words which express more general concepts are sup-
posed to lie closer to the origin than words the express
specific concepts. The results for this experiment are
shown in table 3 and table 4. Figure 3, shows the vi-
sualization of the word embedding obtained from 2D
Poincaré event Embedding. For visual clarity, we man-
ually picked a few related words from the training set.
Even without explicit supervision of word-based con-
ceptual hierarchy, the learned embedding captures the
hierarchy of words.

4.4 IntrinsicQuantitative Evaluation

In the dataset,D, for each positive pair, P (ui, vi) and its
negative counterpart N(ui, v

′
i), we calculate is-a score

[15].
score(is-a(x, y)) = −(1 + α(∥y∥ − ∥x∥))d(x, y) (3)

Norm Words

0.473 - 0.533 fauna, vertebrate, abstract, art, entity, interact
0.533 - 0.553 cognition, department, europol, organism, host, aspect,

landscape, intelligence, biological, nestle, reality, defense,
complex, interior, index, germany

0.553 - 0.573 culture, raw, chemical, flora, abstraction, fleischer,
agency, language, nature, food, speak, flavor, rubin, situ-
ation, affairs, kraft, agriculture
Table 3: Words with the lowest norms

Norm Words

0.94 - 0.945 femoral, election, archimedes, teargas, voter, elected,
quadruple, bus, cause

0.945 - 0.95 suffrage, systolic, venous, puncture, hail, levitation, string,
lumbar, encephalitis, highway, cantus

0.95 - 0.955 incumbent, rail, edema, livery, spur, atrial, hemorrhagic,
fibrillation, booster, siphon, ferry, railway

0.955 - 0.965 pulmonary, maiden, republish, arterial, torpedo
Table 4: Words with the largest norms

We count the number of instances for which the is-
a(P) score is greater than the is-a(N) score on the held
out test set. In this evaluation, we obtained an accuracy
of 0.845763. Therefore, the resulting embedding gener-
alizes well to unseen events. The obtained is-a score is
well above random guessing.

5 Related Work
Research on event understanding ranges from inferring
intent and emotional reaction [18], sentiment classifica-
tion [7], and script knowledge [19] modeling [4, 9, 14,
5, 17, 23, 13]. Previous work in event understanding
[18, 23, 17, 9, 14, 5] use distributed representational of
events in Euclidean space. However, in recent work,
it has been demonstrated that hyperbolic space is more
suitable for learning representations for data which ex-
hibit some kind of hierarchical structure.

A variety of approaches have been proposed to cap-
ture the hierarchical structure of datasets. Vilnis et
al. [22] proposed Gaussian Embeddings to capture un-
certainty and asymmetry. Nickel and Kiela [15] learned
word embeddings on Poincarés ball, while our work
focuses on event embeddings. Tay et al. [21] learned
question and answer embeddings on the Poincarés ball
for question-answer retrieval. Dhingra et al. [6] ex-
tended [15] work and [6] showed a method to embed
words and sentences into hyperbolic space. However,
the extrinsic evaluation results do not show significant
improvement over Euclidean space-based encoder, and
they do not analyze the learned embeddings deeply.
They learned hierarchical structure exhibited in the data
implicitly using an unsupervised Skip Thought-based
objective [20]. However, before going into fully unsu-
pervised approaches, we believe that we should explore
the properties of learned event embeddings with explicit
supervision of hierarchical structure.
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Figure 2: 2D Poincaré event embedding

6 Conclusion and future work

In this paper, we presented the first study that explores
learning event embeddings with explicit supervision of
event hierarchy. We demonstrated that hyperbolic event
embeddings learned with explicit supervision capture
the hierarchical nature of events. We also showed that,
evenwithout explicit supervision of word-based concep-
tual hierarchy, the learned embedding also captures the
hierarchy of words. Finally, we showed that the learned
hyperbolic event embeddings generalize well to unseen
events.

In future we intend to perform extrinsic evaluation of
the hyperbolic event embedding and to attempt script
knowledge modeling. In addition, we intend to explore
if conventional point-based embedding capture general-
specific relations of events. We also intend to compare
our method with Skip-Thought [6] objective. Finally, we
intend to consider monotonicity for real-world situation
like Multi-NLI.

Acknowledgement
This work was partially supported by JSPS KAKENHI
Grant Number 15H01702 and JST CREST Grant Number
JPMJCR1513, including AIP challenge.

References
[1] Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. Tree-like

structure in large social and information networks. Proceedings - IEEE In-
ternational Conference on Data Mining, ICDM, pages 1–10, 2013.

[2] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds.
IEEE Transactions on Automatic Control, 2013.

[3] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth.
Neural Embeddings of Graphs in Hyperbolic Space. Technical report, 2017.

[4] Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative
event chains. Proceedings of the Association of Computational Linguistics,
31(14):789–797, 2008.

Figure 3: Wording embedding from 2D Poincaré event encoder

[5] Kevin Clark and Christopher D. Manning. Improving Coreference Resolu-
tion by Learning Entity-Level Distributed Representations. 2016.

[6] Bhuwan Dhingra, Christopher Shallue, Mohammad Norouzi, Andrew Dai,
and George Dahl. Embedding Text in Hyperbolic Spaces. In Proceedings of
the Twelfth Workshop on Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs-12), pages 59–69, New Orleans, Louisiana, USA, 2018.
Association for Computational Linguistics.

[7] Haibo Ding and Ellen Riloff. Weakly Supervised Induction of Affective
Events by Optimizing Semantic Consistency. In AAAI, 2018.

[8] Martin B.H. Everaert, Marinus A.C. Huybregts, Noam Chomsky, Robert C.
Berwick, and Johan J. Bolhuis. Structures, Not Strings: Linguistics as Part
of the Cognitive Sciences. Trends in Cognitive Sciences, pages 729–743, 2015.

[9] Mark Granroth-Wilding and Stephen Clark. What Happens Next ? Event
Prediction Using a Compositional Neural Network Model. In In Proceed-
ings of the 14th Conference of the European Chapter of the Association for
Computational Linguistics, pages 2727–2733, Gothen burg, Sweden, 2016.

[10] Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. A Compositional Distribu-
tional Inclusion Hypothesis. In Proceedings of the 9th International Confer-
ence on Logical Aspects of Computational Linguistics. Volume 10054, LACL
2016, pages 116–133, Berlin, Heidelberg, 2016. Springer-Verlag.

[11] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. In Proceed- ings of the 3rd International Conference on Learn-
ing Representations (ICLR), 2014.

[12] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat,
and Marian Boguna. Hyperbolic Geometry of Complex Networks. Physical
Review E - Statistical, Nonlinear, and Soft Matter Physics, 82(3), jun 2010.

[13] Zhongyang Li, Xiao Ding, and Ting Liu. Constructing Narrative Event
Evolutionary Graph for Script Event Prediction. EMNLP, may 2018.

[14] Ashutosh Modi. Event Embeddings for Semantic Script Modeling. In Pro-
ceedings ofThe 20th SIGNLL Conference on Computational Natural Language
Learning, pages 75–83, Berlin, Germany, 2016.

[15] Maximilian Nickel and Douwe Kiela. Poincar\’e Embeddings for Learning
Hierarchical Representations. may 2017.

[16] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543, 2014.

[17] Karl Pichotta and Raymond J. Mooney. Using Sentence-Level LSTM Lan-
guage Models for Script Inference. Arxiv, pages 279–289, 2016.

[18] Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A. Smith, and Yejin
Choi. Event2Mind: Commonsense Inference on Events, Intents, and Re-
actions. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, volume 1 Long Pap, pages 463–473, Melbourne,
Australia, oct 2018. Association for Computational Linguistics.

[19] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and understand-
ing : an inquiry into human knowledge structures. Hillsdale, N.J. : Lawrence
Erlbaum Associates, 1977.

[20] Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang, and Virginia R. de Sa.
Trimming and Improving Skip-thought Vectors. jun 2017.

[21] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Hyperbolic Representation
Learning for Fast and Efficient Neural Question Answering. 2018.

[22] Luke Vilnis and Andrew McCallum. Word Representations via Gaussian
Embedding. dec 2014.

[23] Noah Weber, Niranjan Balasubramanian, and Nathanael Chambers. Event
Representations with Tensor-based Compositions. 2017.

― 220 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.


