
Learning-to-Suggest: Product Recommendation via Several Questions

Xianchao Wu
A.I.&Research, Microsoft Development Co., Ltd.

xiancwu@microsoft.com

1 Introduction

In this paper, we propose a learning-to-suggest
(LTS) framework for product recommendation
through chatbots via asking the user several ques-
tions. We focus on two scenarios: general gift
recommendation and specific keyword-based rec-
ommendation. For general gift recommendation,
the user is supposed to know for whom to buy
(such as family members) but do not know what to
buy. Then, the chatbot’s task is to construct a gift-
receiver profile through asking several questions
which are related to gender and hobbies. This
is more alike “mind-reading” based recommen-
dation. For specific keyword-based recommenda-
tion, the use knows what to buy (such as shoes) or
what to book (such as hotel rooms) but need de-
tailed selection from candidate categories, materi-
als and attributes of the target candidate products
related to those keywords. Then, the chatbot’s task
is to construct a product profile beforehand and
ask several questions related to hierarchical cate-
gory, material or attribute information (illustrated
in Figure 1).

Traditional search engine or collaborative filter-
ing based methods are not well suitable for these
scenarios. The first is that search engines will al-
ways need keywords for keyword-product match-
ing. The second is that collaborative filtering
will make a recommendation based on other/same
people’s buying history. However, we prefer a
user-friendly way of first talking to the user and
then making a suggestion based on asking ques-
tions related to mind-reading or product cate-
gories/attributes. Note that there are gaps of in-
formation richness of between the chatbot and
the users. The users are supposed to be unfa-
miliar with the details of the products and they
need a user-friendly way to obtain these infor-
mation. These motivated our LTS framework for

U: Help me find a gift
A: Sure, who are you shopping for?

1.family; 2.friend; 3.coworker
U: 2
A: what do your friend do frequently?

1.playing outside; 2.reading; 3.TV watching
U: any shoes?
A: Sure, 1.sports; 2.casual; 3....?
U: 1
A: is it for 1.pure running; 2.basketball; 3....?
A: Hi there, how can I help you? 1.hotel, 2.hospital,

3.restaurant, 4.train, 5.attraction
U: 1
A: Okay, do you have a specific area you want to stay in?

1.centre, 2.east, 3.west, 4.south, 5.north
U: 1
A: Which price range do you prefer?

1.economic, 2.business, 3.luxury
U: 1

Figure 1: Three examples under our LTS framework:
general gift recommendation (top), keyword-based for
shoes (middle) and for hotel booking based on Multi-
WOZ dataset (bottom).

chatbots aiming at user-specific and user-friendly
product recommendation. The novel ideas in our
framework include: (1) we dynamically detect
user’s intentions of gift buying or specific keyword
based product filtering; (2) we attach selectable
options to the questions, so that the role of users
is switched from “requirement information sup-
plier” to “option learner and selector” and (3) we
propose entropy-based and reinforcement learn-
ing based methods for ranking questions based on
user’s answering history. Our target is to recom-
mend the optimal products while asking as few
questions as possible.

2 Learning-to-Suggest Framework

Our LTS framework manages chat flow, dialog
state and slot filtering through leveraging the 20-
question-game idea (Zhao and Eskenazi, 2016;
Chen et al., 2018; Hu et al., 2018; Wu et al.,

― 121 ―

言語処理学会 第25回年次大会 発表論文集 (2019年3月)

Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

�
✁
✂✂

�
✁
✄✂

☎

�
✁
✆✂

☎

☎

☎

☎

�
✁
✂✝

�
✁
✄✝

☎

�
✁
✆✝

✞✟✠✡☛☞✌✍✎ ✏✌✌✟✑✒☛✌✓✍ ✔

✡✑✏✕✠✖ ✍✓✍✍✑✠✗✍

✘
✁
✂

✘
✁
✄

☎

✘
✁
✆

✞✟✠✡☛☞✌

✍✓✌ ✙✁

✚☛✓✍✌✑✠✗ ✍✓✌ ✛✁

✞✟✠✡☛☞✌✜✚☛✓✍✌✑✠✗ ✢✏✌✟✑✣ ✤
✁
✥✠✟ ✦✜✌✧ ☞✏✌✓✖✠✟★

✞✟✠✡☛☞✌ ✘
✁
✂✩ ✏✍✧✕✓★ ✧✠✌✓✕

✪☛✓✍✌✑✠✗ ✫
✁
✂✩ ✡✠ ★✠☛ ✗✓✓✡ ✬✏✟✭✑✗✖✮

✯✓✥✓✟✓✗☞✓ ✏✗✍✰✓✟ �
✁
✂✂
✩ ★✓✍

Figure 2: The matrix that links products and questions.

�✁✂✄☎✆

✝✞✂✞✟

✠✡✟☛✞✁☎☞

✌✂☞✍✁☞✆

✎✌☎✏✡✑✞ ✒✌☎✓✁✄✟ ✏✂✞✂✔✂☛✟

✕✖

✕
✗

✘

✕
✙

✂☛✍

✚✁☞✏✛✌✟✂✏✁☞✆ ✔✂☛✟✏ ✞✌✁✆✆✟✌✁☞✆

✜☛✟✌

✢✟✑☎✣✣✟☞✏

✒✌☎✏✡✑✞☛

�✁✂✄☎✆ ☛✟☛☛✁☎☞☛ ☎☞✞☎✄☎✆✤

✑✥✂✞✔☎✞

�✂✞✂✔✂☛✟

✑☎☞☛✞✌✡✑✞✁☎☞

✝✒✟✑✁✓✁✑ ✍✟✤✦☎✌✏✛✔✂☛✟✏ ✞✌✁✆✆✟✌✁☞✆

✧☞✞✌☎✒✤✛✔✂☛✟✏

✎☎✄✁✑✤✛✔✂☛✟✏

✠✡✟✌✤

✡☞✏✟✌☛✞✂☞✏✁☞✆

Figure 3: Our LTS framework as a question chatbot.

2018). Figure 2 shows a reference answer matrix
Di which is designed to link the product set Pi and
the question setQi for each category i (e.g., shoes,
hotel). One element in Di is denoted as vimn in
which m is the index for a product pm and n is the
index for a question qn. The question setQi comes
from the attributes and their values of products.

The LTS framework (Figure 3) includes two
modules: (1) constructing the database of P , Q
and their relation matrices D and (2) applying the
database through a chatbot for query understand-
ing (by slot filtering), question ranking, user’s re-
sponse processing and candidate product recom-
mending.

3 Entropy-based Question Selection

The entropy-based question selection method was
described in (Wu et al., 2018; Hu et al., 2018) for
famous people guessing. In this paper, we adapt
this method to the field of product recommenda-
tion. The major idea is to select the next question
that can prune as many candidate entries as possi-
ble, no matter the user’s answer is yes or no.

Initially, for one category i, we assign a prior
popularity weight w(·) to each candidate product
pim (1 6 m 6 M). The weight can comes from
(1) search frequency in search engine, (2) review
score in e-commerce websites or even (3) manu-
ally constructed dialog sessions as adopted in this
paper. Then, we normalize w(·) by:

w′(pim) =
w(pim)∑
mw(p

i
m)

For one candidate pim, we compute its contribution
Y l
m,n of selecting a question qn:

Y l
m,n =

f lm,n + αI(vi,lm,n = yes)∑Ln
l=1 {f lm,n + αI(vi,lm,n = yes)}

(1)

Here, f lm,n stands for the frequency that users se-
lected option l of qn for a final chosen of pim. I(·)
stands for an indicator function that returns 1 when
vi,lm,n equals to yes and 0 otherwise. We introduce
a parameter α here to balance users’ selections
and the reference answer included in the product-
question matrix Di.

When we range over all candidate pm, we ob-
tain Y l

n which stands for the importance of option
l in question qn:

Y l
n =

M∑
m=1

w′(pim)× Y l
m,n

We set the negative variance of Y l
n for ranking qn:

w(qn) = −
Ln∑
l=1

(Y l
n −

∑Ln
l=1 Y

l
n

Ln
)2

A slightly different way is to use the negative
Shannon entropy for the Multivariate Bernoulli
distribution of options:

Mm,n =

Ln∑
l=1

Y l
m,nlog2Y

l
m,n

― 122 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

Then, the weight of a question qn is defined as:

w′(qn) =

M∑
m=1

w′(pim)×Mm,n (2)

We skip the category index i for most variables
except pim for simplicity.

4 Policy-based Reinforcement Learning

Policy-based reinforcement learning algorithms
have been used in (Hu et al., 2018; Chen et al.,
2018) for 20-question games such as guessing of
famous people with limitations of only allowing
game players to answer yes, no, or unknown for the
single-attribute questions. We adapt this method
to suitable to multiple option attached questions
for product recommendation.

Alike the original 20-question game, we for-
mulate the process of question ranking as a finite
Markov Decision Process (MDP) expressed by a
5-tuple 〈S,A, P,R, γ〉, where S is the continuous
dialog state space, A = {q1, ..., qn} is the set of all
available actions (i.e., questions in our scenario),
P (St+1 = s′|St = s,At = q) is the state transi-
tion probability matrix,R(s, q) is the reward func-
tion and γ ∈ [0, 1] is a decay factor to discount
the long-time returns. In our policy-based rein-
forcement learning algorithm, at each time-step
t, the question chatbot takes an action qt under
the current state s according to the policy func-
tion πθ(qt|s). After applying qt to s and receiving
user’s answer to qt (i.e., interacting with the envi-
ronment), the question chatbot receives a reward
score rt+1 and the dialog state updates from s to
s′. This quadruple 〈s, qt, rt+1, s

′〉 is taken as an
episode in the reinforcement learning process.The
long-time reward Rt of time-step t is traditionally
defined to be Rt =

∑T−t
k=0 γ

krt+k+1.
In our LTS framework, a dialog state st keeps

track of time t’s confidence of candidate products
{pim} to be sent to the user. Specifically, st ∈ RM ,
∀st,m ≥ 0 and

∑M
m=1 st,m = 1. Here, st,m de-

notes the confidence that product pim is user’s pre-
fer at time-step t. Initially, s0 can take the prior
distribution of candidate products as we described
in the entropy-based question ranking method.

Given the product set Pi = {pim} and the ques-
tion set Q = {qn}, we compute the normalized
confidence of user’s answer over the optional can-
didates attached in each question qn. That is, the
transition of dialog state is defined as:

st+1 = st � β.

question # avg.
category # product (combined) yes
attraction 79 119 (2) 4.5
hospital 66 88 (0) 2.7
hotel 33 43 (6) 7.2
restaurant 110 146 (2) 4.4
train 2,828 31 (5) 7.0

Table 1: Statistics of products and questions in the five
categories of the Multi-WOZ corpus.

Here, � is the dot product operator, β depends on
the user’s answer (selection) xt to the question qt
(with a index of nt in the question set {qn}) which
is selected by the question chatbot at time-step t.
We define β = [Y

{l}
1,nt

, ..., Y
{l}
M,nt

] when user selected
option(s) {l} ⊂ [1, ..., Lnt] for current question qt
and Y {l}m,nt =

∑
l∈{l} Y

l
m,n takes a similar defini-

tion in Equation 1. Through this way, the confi-
dence st,m of a candidate product pim is updated to
st+1,m based on user’s answer {l} to the selected
question qt at time-step t.

We further accept specific keyword based re-
quirements (refer to the bottom part in Figure 3).
The keywords (i.e., slots) included is first detected
by existing single sentence oriented slot filtering
methods (Mesnil et al., 2013). Then, the questions
that are related to the slots are retrieved and their
values are assigned. Suppose at time-step t, we
receive answers Lt = {{l}1, ..., {l}u} for a list of
questions Qt = {q1t , ..., qut }. We then need to up-
date from st to st+1 by applying all the answers to
the questions and respectively updating st:

st+1 = st � β1 � β2...� βu (3)

That is, the confidence of a candidate product is
continuously updated until we range over all the u
questions and their answers.

5 Experiments

5.1 Setup and Results for Multi-WOZ
We choose the Multi-WOZ corpus (Budzianowski
et al., 2018) to testify our LTS framework. We
pick five domains attraction, hospital, hotel,
restaurant, and train since the number of prod-
ucts and their attribute ontology are in a reason-
able size.

We use R to denote the LTS model in which
the reward net is updated jointly with the policy
model. In contrast, we use R0 to denote the non-
joint model which only returns rewards alike the
entropy based method.

― 123 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

R+ dialog
entropy R0 R sessions

attraction 44.7 52.7 69.9 -
hospital 70.5 82.7 93.1 -
hotel 72.0 75.4 88.9 91.9
restaurant 43.3 37.5 61.1 63.9
train 59.2 64.2 73.4 -

Table 2: Comparison of succeed rates (%) evaluated by
self-play (at epochs = 50,000), across categories and
method configurations.

✄

✄�✁

✄�✂

✄�☎

✄�✆

✄�✝

✄�✞

✄�✟

✄�✠

✄�✡

✁

✄ ✄�✝ ✁ ✁�✝ ✂ ✂�✝ ☎ ☎�✝ ✆ ✆�✝ ✝

☛ ✁✄✄✄✄

☞✌✍✎✏✑ ✒✑✓ ✑✔✎✎☞☞✕ ✖✗✘☞✑

✙✚✛✜✢�✜✣✛✤✚✥✦ ✙✚✛✜✢�✧✄ ✙✚✛✜✢�✧✁

✙✚✛✜✢★✩✜✩✩✪✚✣ ✤✜✩✛✫✬✤✫✣✛�✜✣✛✤✚✥✦ ✤✜✩✛✫✬✤✫✣✛�✧✄

✤✜✩✛✫✬✤✫✣✛�✧✁ ✤✜✩✛✫✬✤✫✣✛★✩✜✩✩✪✚✣

Figure 4: LTS’s policy-learning curve of accuracy con-
ditioned on epochs for hotel and restaurant domains.
R0=R0, R1=R.

Figure 4 shows the learning curve of accuracy
conditioned on epochs (maximum 50,000) for ho-
tel and restaurant domains under three configura-
tions. The entropy-based method is drawn as well
for a reference. For the restaurant domain, the
entropy based method outperforms the reinforce-
ment methods before 15,000 epochs, after that, the
reinforcement learning method significantly im-
proved with more learning epochs. For the hotel
domain, the joint method R achieves compara-
ble accuracy even at the beginning guided by the
product-question matrix. In these two domains,
we find that R is robust no matter there are dialog
sessions for pre-training or not.

5.2 General Gift and Keyword-based
Recommendation

Besides the service booking recommendation, we
further launched two product recommendation
systems, general gift and keyword-based recom-
mendations. We collected 500 products under
50 categories as gifts and collected 50 combined
questions related to gender and hobby informa-
tion. We manually link the categories of the prod-
ucts to the questions and each question has aver-
agely around 10 categories assigned to be related.
For example, running shoes for people who pre-

fer to go outside exercises. Our self-playing re-
sults yields an accuracy of 24.5% with averagely
8 questions.

For the keyword-based recommendation, we
collected 1,000 products with 20 categories and
2,000 keywords, our self-playing results reflects
an accuracy of 85% for the top-3 recommenda-
tions with averagely 5 questions.

6 Conclusion

We have described an end-to-end LTS frame-
work for question chatbot constructing aiming at
product recommendation. One “end” is product-
attribute tables and the other “end” is multi-
domain question chatbots. Our framework is suit-
able for situations where only product-attribute ta-
bles are available and there are no or quite few
real-world dialog sessions belong to that target
domain. By constructing a question chatbot, we
switch the terminal users of from requirement sup-
pliers to simple decision makers for both time sav-
ing and usage-threshold lowering.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of
EMNLP, pages 5016–5026.

Yihong Chen, Bei Chen, Xuguang Duan, Jian-Guang
Lou, Yue Wang, Wenwu Zhu, and Yong Cao.
2018. Learning-to-ask: Knowledge acquisition via
20 questions. In Proceedings of ACM SIGKDD,
pages 1216–1225. ACM.

Huang Hu, Xianchao Wu, Bingfeng Luo, Chongyang
Tao, Can Xu, wei wu, and Zhan Chen. 2018. Play-
ing 20 question game with policy-based reinforce-
ment learning. In Proceedings of EMNLP, pages
3233–3242.

Grgoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In Interspeech 2013.

Xianchao Wu, Huang Hu, Momo Klyen, Kyohei
Tomita, and Zhan Chen. 2018. Q20: Rinna riddles
your mind by asking 20 questions. In Proceedings
of (Japan) NLP, pages 1312–1315, Okayama.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In
Proceedings of SIGDD, pages 1–10, Los Angeles.

― 124 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

