
A Crowdsourceable Protocol for
Collecting User-Generated Counter-Arguments

Paul Reisert† Naoya Inoue†,‡ Kentaro Inui†,‡

†RIKEN Center for Advanced Intelligence Project (AIP) ‡Tohoku University
paul.reisert@riken.jp

{naoya-i, inui}@ecei.tohoku.ac.jp

1 Introduction

Automatic essay scoring (AES) is the task of automat-
ically evaluating a wide-range of criteria of an essay in
a pedagogical context. Such criteria includes the orga-
nization [10], thesis clarity [11] and author stance [12],
to name a few. Several works have also integrated ar-
gumentative features [13, 3, 8] as a means of evaluating
the overall quality of an essay. Applications such as
Grammarly1 and eRater2 have received wide attention
for their ability to automatically assess the contents
of an essay.

While several studies exists for evaluating the crite-
ria of an essay, they do not provide useful feedback to
the writer which in turn could improve their critical
thinking skills. An example of the usefulness of con-
structive feedback is shown in Figure 1. In response
to the prompt P1 (i.e., Are police too willing to use
force?), consider the following argument A1 extracted
from a student’s essay: Police are too willing to use
force. Police are using excessive force all over the US
and its not recorded. In response to this argument,
a teacher would provide constructive feedback to the
student for improving their argument (e.g., CF 3:“Not
all actions of the police are violent”). Afterwards,
a student could revise their argument to produce a
stronger argument (i.e., R1) and in turn learn about
how to produce stronger arguments.

Toward improving critical thinking skills for writers,
recent works have emphasized the importance of both
fallacies and counter-arguments. [4] created a mobile
game which allowed users to identify fallacies in ar-
guments. In the pedagogical context, several stud-
ies have worked towards identifying common fallacies
in student essays [9, 7, 2]. For counter-arguments,
[14] created a task for retrieving the best counter-
argument for a given argument. [6] generated counter-
arguments by extracting evidence to an argument via
Wikipedia. However, with a lack of corpora for mod-
eling constructive feedback, it remains an open issue

1https://www.grammarly.com/
2https://www.ets.org/erater

Prompt P1: Are police too willing to use force?

Student
Essay

(Input)

Argument A1: Police are too willing
to use force. Police are using excessive
force all over the U.S. and it’s not
recorded.

Constructive
Feedback

The use of force
causes less

violation of the law

People who talk
about police force
use are people who
have been arrested

Not all actions of
the police are

violent.

Revised Argument R1: Police are too willing to use force, but
as a result, crime is reduced. Although many people think that
arrested individuals discuss this issue, police are using excessive
force all over the U.S. Granted, this force is not always violent.

Inform

Revision

Output:

StudentCF1:

CF2:

CF3:

Teacher

Figure 1: Example of argument revision via constructive feed-
back.

as to how to automatically generate constructive feed-
back useful for improving one’s critical thinking skills.

There are many benefits for automatically generat-
ing constructive feedback. First, as mentioned a pri-
ori, generating counter-arguments will be useful for
automatically assessing the content of an essay and
providing instant feedback to students. This will al-
low students to produce high-quality arguments while
simultaneously improving their critical thinking skills.
Students will also be able to learn about what types
of arguments they struggle with most. Additionally,
the time spent producing critical comments will be
reduced for teachers, enabling them to select the best
critical comments for a students argument. Second,
the generation of counter-arguments will be useful in
a debate setting, where participants are engaged in a
debate with machines (e.g., IBM Project Debater3).

There are several challenges for creating a corpus
useful for modeling constructive feedback. First, there
exists several hundred fallacy types in the wild [1],
such as ad hominem, begging the question, and ap-
peal to authority. Second, without knowing the fallacy
type in advance, it can be difficult to generate mean-

3https://www.research.ibm.com/
artificial-intelligence/project-debater/

― 151 ―

言語処理学会 第25回年次大会 発表論文集 (2019年3月)

Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

Figure 2: Interface for the Counter-Argument Generation Stage

Figure 3: Interface for the Counter-Argument Verification Stage

ingful feedback. Third, the annotation of fallacies is
costly, time-consuming, and not guaranteed to be high
quality. Therefore, it is necessary to compose an ef-
ficient method for constructing a high-quality, large-
scale corpus for constructive feedback generation.

In this work, we conduct two parallel crowdsourc-
ing tasks in order to determine if a large-scale, high-
quality corpus of user-generated counter-arguments
needed for modeling constructive feedback can be cre-
ated. We first instruct non-expert workers to produce
counter-arguments simply given an argument. Simul-
taneously, we conduct another crowdsourcing experi-
ment which instructs workers to produce a counter-
argument after identifying a specified fallacy type.
Our results suggests that non-expert annotators can
produce useful counter-arguments, especially when
first instructed to identify a fallacy type.

2 Corpus of counter-arguments

In this section, we describe our proposed method for
collecting user-generated counter-arguments.

2.1 Data

We experiment on top of the Argument Reasoning
Comprehension (ARC) corpus [5]. The ARC corpus
contains 2,477 context-independent arguments con-

Figure 4: Interface for identifying a fallacy and producing a
counter-argument

sisting of a topic, claim, premise, warrant, and anti-
warrant pairs created by crowdsourcing, where the
warrant links the premise and claim and the anti-
warrant does not. In total, there are roughly 50 di-
verse topics.

2.2 Crowdsourcing

We use the crowdsourcing platform Figure Eight.4

Our assumption is that a large-scale corpus of counter-
arguments can be constructed by non-expert crowd-
sourcing annotators with appropriate guidelines and
examples.

2.2.1 Counter-argument generation without
fallacy identification (CAG)

Towards creating a large-scale corpus of user-
generated counter-arguments, we first conduct sev-
eral trial experiments on Figure Eight for collecting
counter-arguments. We immediately discovered that
the most important setting is the minimum time per
instance, which prevents workers from tainting the in-
put (e.g., quickly copying and pasting parts of the ar-
gument). Other problems included counter-arguments
of the same stance as the claim/premise and candi-
dates in a non-English language. Thus, we update
our guidelines accordingly. Our final settings consists
of the following: minimum time of 10 seconds per in-
stance, level 3 annotators (i.e., highest quality anno-
tators), and $0.10 per candidate answer.

The final interface at this stage is shown in Fig-
ure 2. Per given topic, the worker is shown the claim
and premise and instructed to produce a counter-
argument that attacks one or both of them.5 Each

4http://www.figure-eight.com
5We adopt this approach from [14], which states that a counter-
argument can attack one or both components.

― 152 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

worker was instructed to produce a counter-argument
that is one sentence and in English.

To verify whether the produced counter-argument
candidates function as a counter-argument, we con-
duct an additional crowdsourcing job. For each can-
didate, we ask workers to verify whether it functions
as a counter-argument. For controlling the reliability
of each worker, we created 8 test questions using a
development set. The test questions were randomly
inserted into the task. Workers had to maintain an
accuracy of over 70% on the test questions; otherwise,
they were immediately ejected from the task. For this
task, each worker was awarded with $0.05 per answer.
In total, each candidate was judged by 5 workers.

For the verification stage, workers were given the
topic, claim, premise, and additionally the candidate
(see Figure 3). The workers were instructed to select
yes if the candidate functioned as a counter-argument;
otherwise, the worker selected no. If the workers were
unsure about whether the candidate functions as a
counter-argument, the workers selected unsure.

2.2.2 Counter-argument generation with fal-
lacy identification (CAG-F)

In addition to our crowdsourcing experiment in Sec-
tion 2.2.1, we conduct an additional study in which
crowdworkers were asked to identify a pre-specified
fallacy type. In total, we randomly select the following
5 fallacy types and their examples from SoftSchools6:
•hasty generalization A fallacy in which a person
hastily assumes that something is generally always
the case based on a few instances.

•red herring A fallacy in which a person changes
the subject to take attention away from the original
argument.

•questionable cause A fallacy in which a person
incorrectly believes that something is the cause for
something else.

•begging the question A fallacy in which the
premise repeats the same information as the claim.

•appeal to common practice A fallacy in which
someone believes something is acceptable only be-
cause most people do it.

To simplify the task for the crowdworkers, we create
5 separate jobs where each worker is asked if an ar-
gument contains a fallacy of the specified type. If
so, each worker was instructed to produce a counter-
argument. An example of the interface for the Hasty
Generalization fallacy identification is shown in Fig-
ure 4.

Because it is time-consuming to manually create
gold data for positive instances of one fallacy type,
and we cannot guarantee that every fallacy type will

6http://www.softschools.com/examples/fallacies/

Fallacy Type 1/5 2/5 3/5 4/5 5/5

Appeal to Common Practice 0 4 3 0 0
Begging the Question 0 7 1 0 0
Hasty Generalization 0 8 0 1 0
Questionable Cause 0 6 3 1 0
Red Herring 0 4 10 1 0

Table 1: Distribution of votes for positively-identified fallacies.

be in the dataset, we do not create test questions for
our 5 crowdsourcing jobs. Instead, at this stage, we
rely on the majority vote of workers for fallacy iden-
tification. At a later stage, we will use the results
of our experiment for creating gold data which can
help control the reliability of future annotations. Si-
multaneously, due to the limited amount of produced
counter-arguments, we avoid integrating a stage for
verifying the counter-argument candidates and manu-
ally analyze them.

3 Analysis and Discussion

For CAG, we generate 2,625 counter-arguments for
525 arguments and verify each using 5 annotators. Af-
ter majority voting, we find that roughly 68.3% of the
counter-arguments were categorized as yes, 31.5% no,
and the remaining were unsure.

For each of the 5 jobs in CAG-F, we had 5 anno-
tators judge 100 instances. We first collect all pos-
itive instances of fallacies identified in CAG-F with
an agreement of 3/5 annotators or more. In total,
we collect 20 instances. The distribution of votes for
positively-identified fallacies (i.e., annotators said yes
for a specific fallacy type) is identified in Table 1. We
note that no fallacy types had perfect agreement. We
believe this will improve with the integration of test
questions.

Stage Useful (%) Useless Undecided Total

CAG 14 (0.19) 40 (0.54) 20 (.27) 74
CAG-F 16 (0.38) 23 (0.55) 3 (0.07) 42

Table 2: Usefulness of Counter-Arguments for CAG and CAG-
F.

For our qualitative analysis, we manually typologize
the counter-arguments produced by crowdworkers for
CAG and CAG-F for the same 20 instances in terms
of their usefulness as constructive feedback with the
following: useful, useless, and undecided.

Our results are shown in Table 2. We observe that
roughly 19% of instances were considered useful for
CAG. On the other hand, with CAG-F, we were able
to acquire more useful instances. In the case of CAG-
F, we found that the counter-arguments were useful
and specific to the fallacy type to identify. For use-
less examples for CAG, we found that roughly 39%
of the counter-arguments were a simple contradiction
(e.g., adding “not” to a claim or premise), whereas

― 153 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

Claim Premise CAG CAG-F

People are getting
dumber

In highly respected
publications there are
numerous errors.

All great people sometimes
make mistakes, this is not a
sign of a lack of intelligence.;
Not every highly respected pub-
lications there are numerous
errors.

Because there are errors in
publications does not mean
that people are becoming more
dumber ; It can not be as-
sumed that people are becoming
more foolish because of errors
in publications

Unpaid internship ex-
ploit college students

Interns are replacing
employees

Interns should not replace em-
ployees but employees should
teach interns what is needed to
be done while in that position.

The premise does not argue for
unpaid internships.

Table 3: Examples of Useful Counter-Arguments for CAG and CAG-F

in CAG-F, we found many of the useless instances
were erroneous responses from workers (e.g., counter-
arguments that only said “objection” or “off-topic”).
We assume that adding a verification phase similar to
CAG will eliminate such erroneous candidates.

Table 3 shows examples of counter-arguments la-
beled as useful for CAG and CAG-F. While we observe
that some counter-arguments produced by crowd-
workers without fallacy identification are useful (e.g.,
Not every highly respected publications there are nu-
merous errors. in Table 3), we observe that counter-
arguments for CAG-F are relevant to a specified fal-
lacy type. For example, for CAG-F, the first row
indicates two counter-arguments for a Questionable
Cause fallacy and the second row indicates a counter-
argument for a Red Herring fallacy.

4 Conclusion and future work

Towards automatically generating constructive feed-
back, in this work, we experimented with construct-
ing a corpus of user-generated counter-arguments via
crowdsourcing. We conducted two parallel crowd-
sourcing tasks where, given a topic, claim and premise,
workers were instructed to i) produce a counter-
argument, and ii) first identify a fallacy type and
then produce a counter-argument. Our results indi-
cate that although we can collect counter-arguments
useful as constructive feedback in both settings, espe-
cially when workers were instructed to first identify a
fallacy in the original argument.

In our future work, we will extend our annotation
for constructing a large-scale corpus of fallacy type
and user-generated counter-arguments. First, we will
expand upon the number of fallacy types to identify.
Next, we will introduce a verification stage via crowd-
sourcing that allows workers to typologize the user-
generated counter-arguments as either useful and not
useful. This will allow us to collect useful instances
at a large scale. After we obtain a reasonable amount
of counter-arguments, we will implement a sequence-
to-sequence model for automatically generating con-
structive feedback for a given argument.

Acknowledgement

This work was supported by JSPS KAKENHI Grant
Number 15H01702 and JST CREST Grant Number
JPMJCR1513, including AIP challenge.

References
[1] Bo Bennett. Logically fallacious: the ultimate collection of

over 300 logical Fallacies (academic edition). eBookIt. com,
2012.

[2] Niamika El Khoiri and Utami Widiati. Logical fallacies in
indonesian efl learners’ argumentative writing: Students’ per-
spectives. Dinamika Ilmu, 17(1):71–81, 2017.

[3] Debanjan Ghosh, Aquila Khanam, Yubo Han, and Smaranda
Muresan. Coarse-grained argumentation features for scoring
persuasive essays. In Proceedings of the 54th Annual Meeting
of ACL (Volume 2: Short Papers), pages 549–554, 2016.

[4] Ivan Habernal, Patrick Pauli, and Iryna Gurevych. Adapt-
ing Serious Game for Fallacious Argumentation to German:
Pitfalls, Insights, and Best Practices. In Proceedings of the
Eleventh International Conference on LREC, 2018.

[5] Ivan Habernal, Henning Wachsmuth, Iryna Gurevych, and
Benno Stein. The argument reasoning comprehension task:
Identification and reconstruction of implicit warrants. In Pro-
ceedings of the 2018 Conference of NAACL: HLT, Volume
1 (Long Papers), pages 1930–1940. Association for Computa-
tional Linguistics, 2018.

[6] Xinyu Hua and Lu Wang. Neural argument generation aug-
mented with externally retrieved evidence. In Proceedings of
the 56th Annual Meeting of ACL (Volume 1: Long Papers),
pages 219–230, 2018.

[7] Rohmani Nur Indah and Agung Wiranata Kusuma. Fallacies
in english department students claims: A rhetorical analysis
of critical thinking. Jurnal Pendidikan Humaniora, 3(4):295–
304, 2015.

[8] Huy V Nguyen and Diane J Litman. Argument mining for
improving the automated scoring of persuasive essays. 2018.

[9] Witri Oktavia, Anas Yasin, et al. An analysis of studentsargu-
mentative elements and fallacies in studentsdiscussion essays.
English Language Teaching, 2(3), 2014.

[10] Isaac Persing, Alan Davis, and Vincent Ng. Modeling organiza-
tion in student essays. In Proceedings of the 2010 Conference
on EMNLP, pages 229–239. Association for Computational
Linguistics, 2010.

[11] Isaac Persing and Vincent Ng. Modeling thesis clarity in stu-
dent essays. In Proceedings of the 51st Annual Meeting of
ACL(Volume 1: Long Papers), volume 1, pages 260–269,
2013.

[12] Isaac Persing and Vincent Ng. Modeling stance in student
essays. In Proceedings of the 54th Annual Meeting of ACL
(Volume 1: Long Papers), volume 1, pages 2174–2184, 2016.

[13] Henning Wachsmuth, Khalid Al-Khatib, and Benno Stein. Us-
ing Argument Mining to Assess the Argumentation Quality of
Essays. In Proceedings of the 26th International Conference
on COLING, pages 1680–1692, 2016.

[14] Henning Wachsmuth, Shahbaz Syed, and Benno Stein. Re-
trieval of the best counterargument without prior topic knowl-
edge. In Proceedings of the 56th Annual Meeting of ACL
(Volume 1: Long Papers), volume 1, pages 241–251, 2018.

― 154 ― Copyright(C) 2019 The Association for Natural Language Processing.
All Rights Reserved.

