)

1=

BALEL S SEOSIRMEIR RS B L (20204E3)

Towards Multiple Tasks Integration with Reinforcement
Learning

Timothée Bernard
National Institute of Advanced Industrial Science and Technology (AIST)

timothee.bernard@ens-lyon.org

1 Introduction

Historically, Natural Language Processing (NLP)
systems have generally been built as sequential
pipelines, where each module adds another layer of
annotation, in order of (supposed) increasing com-
plexity. For example, the system of [4], winner of
the CoNLL-2005 Shared Task on Semantic Role La-
beling (SRL) [2], starts with a syntactic analysis,
followed by a pruning stage that collects argument
candidates, an argument identification stage, an ar-
gument classification one and an inference stage that
takes the final labelling decisions based on the clas-
sification probabilities output by the previous stage
as well as a set of linguistic constraints. With the
progress of neural networks, however, we have seen
the apparition of state-of-the-art systems that com-
pletely bypass intermediate levels of analysis that
were previously considered essential. For example,
the systems of [16] and [6] performs respectively SRL
and coreference resolution, both without referring to
any explicit (morpho)syntactic information.

A well known problem of sequential systems is er-
ror propagation. Error propagation happens when
an incorrect action makes a subsequent correct ac-
tion unavailable, because the two are logically incon-
sistent, or when the action leads to a state that is
unusual (unseen during the training process) with
the effect of disrupting the system so that a subse-
quent correct action fails to be predicted even though
it is logically consistent [7]. Additionally, traditional
pipelines are conceptually limited by the fact that the
flow of annotation between their different stages is
unidirectional. For example, a system could perform
Word Sense Disambiguation (WSD) before seman-
tic parsing and in that case WSD classification can
be used during semantic parsing, but not semantic
parsing decisions for WSD. Alternatively, the system
can preform semantic parsing first, and in that case
it is the other way around. However, it is not clear
that one ordering is the “right” one, optimal for all
inputs. Intuitively, one might prefer do what is easy
first, considering both tasks, in order to maximise
the information available when taking the hardest

— 1503 —

decisions. This kind of easy-first strategy has indeed
been applied to various NLP problems, but only in
single-task contexts [10, 3, 11, 15].

End-to-end systems with no intermediate level of
analysis cannot, by definition, suffer from the first
type of error propagation. However, by reducing the
information in the training signal at their disposal,
they might not leverage the full power of the neu-
ral networks they are usually based on. Indeed, by
reintroducing syntactic dependencies in the training
process, [12] managed to develop a state-of-the-art
system for SRL that at the same time computes a
good quality syntactic parse. The solution they im-
plement, however, is very specific to the combina-
tion of tasks they consider. Furthermore, the in-
teraction between the two types of information can
only happen during the unique pass inside a neural
network, where SRL and syntactic dependencies are
only present under distributional forms, before they
are independently discretised into symbolic struc-
tures.

In this work — currently under progress —, we
propose to build a system that performs part-of-
speech (POS) tagging, syntactic dependency parsing
and semantic dependency parsing (SDP) in a non-
sequential way. At each time step, the system can
take actions related to any of these three annotation
layers, with no order constraint. Each of these lay-
ers of annotation are fed as input for the next time
steps, so they can fully interact with each other. Our
model is inspired by the semantic dependency parser
of [5], which was shown to develop an easy-first strat-
egy (short semantic dependencies before longer ones)
thanks to a Reinforcement Learning (RL) procedure.
The most obvious difference between their work and
ours is that we fully integrate different tasks into a
unique system. This naturally leads to differences in
architecture. The RL algorithm that we use is also
slightly different from theirs.

2 Overview of the model

We use the data from task 18 of SemEval 2015
(broad-coverage semantic dependency parsing) [8].

All Rights Reserved.

Copyright(C) 2020 The Association for Natural Language Processing.

In this work, we use only the English portion of
the training data (which originates in the WSJ cor-
pus) annotated with the DM semantic formalism. In
this formalism, the semantic structure is a directed
acyclic graph (each token may have zero, one or more
parents) with labelled edges and some tokens can in
addition be labelled as top predicates. We use the
gold syntactic dependencies provided but ignore the
annotated lemma information.

As [5]’s model, ours analyses an input sentence in
multiple (time) steps. At each step ¢, the lower part
of the network (Section 4), produces a vector rep-
resentation for each token. This representation en-
codes, among other things, the current state of the
syntactic and semantic structures. Then, the higher
part of the network (Section 5) computes in paral-
lel for each token k a distribution of probability 7, ;
of actions. The set of possible actions includes ex-
actly: one action per POS (TAG-I), one action per
pair (4,1) where i is a token of the sentence and [a
syntactic dependency label (SYN-i-l), idem with se-
mantic dependency labels (SEM-i-1), a TOP_PRED
action and a NOTHING action.! Then, for each to-
ken k an action ay ; is performed, sampled from the
corresponding distribution 7. The episode stops
when all tokens simultaneously select the NOTHING
action, or when a step limit is reached.

We start with a pre-training phase, during which
the log-likelihood of the model on goldish sequences is
minimised: for each token, we first build a sequence
of (non-NOTHING) actions leading to the gold an-
notation, shuffle it, add a final NOTHING actions
and pad all sequences with NOTHING actions so
that they have the same length for all tokens. When
the performance on SDP saturates, we start the RL
phase described in the next section, during which
the models try to find optimal sequences of actions
(whose ordering we do not know).

3 Training

During the RL phase, we associate with each action
a (for a given token k at a given time step t) a scalar
reward, r(a, k,t), described at the end of this section.
We train the model to maximise the expected sum
of rewards, J = E(R), where E =), R; and R, =
doerlas, k,t).

To do so, we adapt here the REINFORCE al-
gorithm [14] to our parallel processing. This sim-
ply consists in treating each token independently,
except for the fact that we distribute future re-

1For the sake of simplicity, in the following section, 3, we
will talk about top predicates as if they were the dependants
of special virtual semantic dependencies.

— 1504 —

wards to each token’s discounted reward equally.?
More formally, given v the discount factor, we de-
fine the discounted reward for token k at time t as
Gt = r(ags, kt) + 35, ’yiR‘n“, where n is the
length of the sentence. The direction of the parame-
ters update for a given episode is then: 3~ . (Gk,t—
bi.t)Volog 7y ¢ (ay ¢) where by, is the baseline term.
The baseline term is not strictly necessary; its goal is
to reduce the variance of the estimate of the gradient
in order to speed the learning process [13, §13]. We
use a state value baseline, which is trained by min-
imising its squared error with the observed return,
L =3,5040(Sk) — Grt)?. The policy and base-
line parameters updates are weighted with coefficient
0.67 and 0.33 respectively.

We now turn to the definition of the rewards. In
this work, we give equal importance to all layers
of annotation (i.e., POS tagging, syntactic parsing
and semantic parsing). Let #pos, #synt and #sdp
be, respectively, the number of tokens tagged with
a POS (this is in fact the number of tokens, as they
are all tagged), the number of syntactic dependen-
cies and the number of semantic dependencies. Also,
let N be the number of sentences in the training cor-
pus. We then define rpos =

_ _N
P~ #sdp’
computed as the sum of the reward of its effects.
Creating a correct (resp. incorrect) POS annota-
tion corresponds to a rpos (resp. —rpos) reward,
and similarly with Tsynt for syntactic dependencies
and rgem for semantic ones. In addition, as, in the
current system, a new action overwrites any previ-
ous incompatible ones, when an annotation is re-
moved, a reward equal to the opposite of its creation
is added. For example, if at step ¢ the action for
token k is to add an incorrect tag, if at that point
token k was correctly tagged, the corresponding re-
ward is —2rpog because an incorrect tag is added and
a correct one is removed. Correctly annotating the
entire training corpus then leads to a total reward
of #pos * rpos + #synt * Tsynt + #£sem * rgem, i.€.,
3N. In other words, a reward of 3 on average per
sentence.

N_ . _ _N
#pos> 'synt = zsynt
The reward of a given action is

and Tsd

4 'Token representation

We first define a base encoding for each token, com-
posed of 100-dimensional pre-trained GloVe word
embeddings [9] concatenated to a set of tagging fea-
tures including prefix and suffix embeddings. These
base encodings serve as input to the token represen-
tation module, the architecture of which is depicted

215] do not discuss the definition of the discounted rewards
because they only use the immediate local reward (discounting

factor v = 0).

All Rights Reserved.

Copyright(C) 2020 The Association for Natural Language Processing.

in Figure 1. The base encodings are fed indepen-
dently to a BiLSTM, a syntax and a semantics en-
coder; the three outputs are concatenated before be-
ing fed to a final BiILSTM. The syntax and the se-
mantics encoders are both graph encoders defined in
the following way. Given a graph — defining a set of
parents parent(z) for each token i along with (3, 1),
the label of the arc from j to ¢ for j € parent(i) —
and writing u; for the base encoding of token i and
v; for the embedding of label [, the graph encod-
ing of the sentence is (w;); = BILSTM((w;’);) where
wi' = Zjeparent(i) Dense([u;, vi(j,))-

The representation of each token k, vy, is sent (i)
to a multilayer perceptron (MLP) that computes the
state value by ; (the baseline term) and (ii) to differ-
ent sub-networks that compute the log-probabilities
of the actions (i.e., the probabilities before applying
softmax), and are described in the next section.?

5 Action log-probablities

The log-probability (or score) of each action is com-
puted by one of three sub-networks. The first one
is a simple MLP that returns the scores for TAG
actions, TOP_PRED and NOTHING. The second
returns the scores for SYN actions: the score, for to-
ken i, to select token j as governor, for all possible
dependency labels is given by MLP([v;,v;,]) € RIZI,
where § (1 or 0) indicates whether j is currently the
governor of ¢ and |L| is the number of dependency
labels. The last sub-network returns the scores for
SEM actions in exactly the same way. The policy
for a given token is then obtained by applying the
softmax function to the vector of all corresponding
scores.

6 Preliminary results and dis-
cussion

In this section, we start by presenting some prelim-
inary results, before sketching a road-map for the
continuation of the project. This project is currently
under active work; all performance measures pre-
sented here have been computed on the development
set and with our own algorithm (instead of the stan-
dard external tools). These numbers must then be
considered with caution, as punctuation marks, for
example, may not be handled (or set aside) correctly
when computing syntactic or tagging performances.

We think the current results are promising. With
a reasonable choice of hyperparameters, our model
reliably trains to get above 91% labelled F1 for SDP.

3All BiLSTMs that we use are actually 2-layer BiLSTMs,
and all MLPs have two hidden layers.

— 1506 —

The current state-of-the-art, [5], gets 91.2% labelled
F1 when not using lemma information (as we do,
but on the test set). Concerning syntax, our model
reaches 92% labelled recall.* To put this number in
perspective, [12], who produce syntactic dependency
trees as a by-product of SRL, report 91.87% LAS (on
the test set) using GloVe embeddings (as we do). As
for POS tagging, our model assigns a tag to more
than 99.9% of the tokens, for a recall above 97%. To
put this number in perspective, [12] (still with GloVe
embeddings and on the test set), report an accuracy
of 96.92% (the current state-of-the-art of the Penn
Treebank is 97.96% [1]).

Like [5], we observe that our model naturally infers
a kind of easy-first strategy: it tends to create shorter
dependencies before longer ones. Figure 2 illustrates
this for both syntax and semantics

The next obvious step for this project is to fin-
ish finding optimal hyperparameters and properly
evaluate the trained models. Then, we would be
interested in studying what happens when the re-
wards associated with tagging and syntactic parsing
are lowered. We expect that doing so will encour-
age precision over recall, and possibly let the system
generates syntactic structure that diverge from the
gold annotation. In addition, we would like to study
how the model trains on partially annotated data,
i.e., when some training instances are annotated for
syntax only while others for semantics only.

References

[1] Bernd Bohnet, Ryan McDonald, Gongalo Simdes, Daniel
Andor, Emily Pitler, and Joshua Maynez. Morphosyn-
tactic Tagging with a Meta-BiLSTM Model over Con-
text Sensitive Token Encodings. In Proc. of ACL (long
papers), pages 2642—-2652, 2018.

[2] Xavier Carreras and Lluis Marquez. Introduction to the
CoNLL-2005 Shared Task: Semantic Role Labeling. In
Proc. of CoNLL, pages 152—-164, 2005.

[3] Yoav Goldberg and Michael Elhadad. An Efficient Algo-
rithm for Easy-First Non-Directional Dependency Pars-
ing. In NAACL-HTL, pages 742-750, 2010.

[4] Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen-
tau Yih. Generalized Inference with Multiple Semantic
Role Labeling Systems. In Proc. of CoNLL, pages 181—
184, 2005.

[5] Shuhei Kurita and Anders Sggaard. Multi-Task Semantic
Dependency Parsing with Policy Gradient for Learning
Easy-First Strategies. In Proc. of ACL, pages 2420-2430,
2019.

[6] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. End-to-end Neural Coreference Resolution. In
Proc. of EMNLP, pages 188-197, 2017.

4As we currently do not force the system to compute com-
plete syntactic trees, precision, recall and F1 could vary; in
practice, the model assigns a syntactic head to more than
99.5% of tokens and the different measures are almost equal.

All Rights Reserved.

Copyright(C) 2020 The Association for Natural Language Processing.

Figure 1: Architecture of the token representation module.

|

input

(ee0e0) |(@0000) |((@0000)
(eoee0) |(@0000) |((@0000)

Syntactic
dep.

(ee0e0) |(@0000) |(@0000)

sequence is composed of one vector per token.

10k

nRas

18]
S
s}
S

(e0000] |

The input is the sequence of base encodings. Each

£
5 8k
o
L]
v Gk
g
%
3
(=
2k
—
0
0 1 2 3 4
step
8000
£
H 6000
]
@
k<]
« 4000
@
=]
£
3
£ 2000
0
0 2 3 4
step

Figure 2: Number of syntactic (top)/semantic (bottom) dependencies created at each step (on the whole
development set) for dependencies of length one to four.

[7]

[9]

(10]

(11]

Minh Lé and Antske Fokkens. Tackling Error Propaga-
tion through Reinforcement Learning: A Case of Greedy
Dependency Parsing. In Proc. of EACL (long papers),
pages 677-687, 2017.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel
Zeman, Silvie Cinkova, Dan Flickinger, Jan Hajic, and
Zdenka Uresova. SemEval 2015 Task 18: Broad-Coverage
Semantic Dependency Parsing. In Proc. of SemFEwal,
pages 915-926, 2015.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. GloVe: Global Vectors for Word Representa-
tion. In EMNLP, pages 1532-1543, 2014.

Libin Shen, Giorgio Satta, and Aravind Joshi. Guided
Learning for Bidirectional Sequence Classification.
Proc. of ACL, pages 760-767, 2007.

In

Veselin Stoyanov and Jason Eisner. Easy-first Corefer-
ence Resolution. In Proc. of COLING, pages 2519-2534,
2012.

— 1506 —

(12]

(13]

(14]

(15]

(16]

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. Linguistically-Informed
Self-Attention for Semantic Role Labeling. In Proc. of
EMNLP, pages 5027-5038, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. Adaptive Computation and
Machine Learning series. 2nd edition, 2018.

Ronald J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8(3-4):229-256, 1992.

Jun Xie, Chao Ma, Janardhan Rao Doppa, Prashanth
Mannem, Xiaoli Fern, Thomas G. Dietterich, and Prasad
Tadepalli. Learning Greedy Policies for the Easy-First
Framework. In AAAI 2015.

Jie Zhou and Wei Xu. End-to-end learning of semantic
role labeling using recurrent neural networks. In Proc. of
ACL (long papers), pages 1127-1137, 2015.

Copyright(C) 2020 The Association for Natural Language Processing.

All Rights Reserved.

