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1 Introduction

Neural machine translation (NMT) has achieved high
performance for domains where there is almost no ambi-
guity in data such as newspaper domain [1, 2]. However,
for other domains such as spoken language or sports com-
mentary, the ambiguity in data still remains a problem.

Multimodal machine translation (MMT) [3] is one of the
key tasks focusing on incorporating multimodal content
as auxiliary information sources to resolve the ambiguity,
such as audio or visual data. MMT models usually take
a sentence in the source language with the corresponding
visual data and translate it into a sentence in the target lan-
guage. Recent studies [4] assume that the spatiotemporal
context information in the visual data helps to reduce the
ambiguity of objects or motions in the source text data.

Previous MMT works mainly focus on Image-guided
Machine Translation (IMT) task on the widely used
Multi30K [5] dataset. However, video is a better infor-
mation source than image because videos usually contain
much more information than images. One video contains
ordered sequence of frames and provides rich visual fea-
tures. For each frame, it provides spatial representations
for object disambiguation as an image in IMT task. Besides
object disambiguation in one frame, the ordered sequences
of frames can provide temporal representations for motion
disambiguation.

Video-guided Machine Translation (VMT) aims to en-
gage video data and text data for high-quality translation.
Due to the lack of datasets, VMT received less attention
than IMT. To cope with this problem, Wang et al. [6]
collect a new large-scale and reasonable-quality multilin-
gual video description dataset (VATEX). Each video in the
dataset contains hundreds of frames and it is impractical
to utilize all objects information from all frames. Existing

works only used features from pretrained action detection
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Original: An apple picker takes apples from the trees and places them in a bin.
Translaton: — M EREFRMMEBTER, ABEEMNKRE—T
17 1% 1% B . (An apple apple takes apples from the trees and places them in a
trash bin.)

Figure 1 An example of the object ambiguity problem

models as temporal representations of the video to solve
the motion ambiguity, thus the object ambiguity still re-
mains a problem. As shown in Fig 1, the object "picker’
and ’bin’ in English are wrongly translated into "apple’ and
‘trash bin’ in Chinese, which are mistranslations partially
due to the object ambiguity.

In this work, we propose our VMT system by using both
temporal and spatial representations in a video to cope with
both the motion ambiguity problem as well as the object
ambiguity problem. To obtain spatial features efficiently,
we propose to use a hierarchical attention network (HAN)
[7] encoder to model the spatial information from object-
level to video-level. The HAN framework mainly contains
2 layers for object-to-frame level and frame-to-video level
abstractions, a transformer encoder layer [8] is also adopted
between 2 layers to obtain contextual spatial information.
Experiments on VATEX dataset show 0.2 BLEU score

improvement over a strong baseline method.

2 Related Work

We introduce different kinds of auxiliary information
used in MMT in this section. Pretrained image features are
widely used in the initial attempts of IMT, such as using
them to initializing the hidden states of the encoder and/or
the decoder [9]. ResNet-50 CNN-based image classifier
and information extracted from automatic object detectors

shows better performance on IMT tasks [10]. Wang et
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Figure 2 Proposed model with spatial HAN encoder. The source encoder and the temporal encoder are the same as in VMT baseline
model, we concatenate them with our proposed spatial HAN encoder by similar target decoder.

al. [6] introduce a strong baseline model which employs
the pretrained I3D model [11] for action recognition to get
the motion representation while combines attention mech-
anism [12]. The model combining keyframes information
through keyframe selection algorithm and position infor-
mation of the ordered sequence of frames in a video further
improves the translation quality [13].

Besides the action representation which solves the mo-
tion ambiguity, spatial information from a sequence of
frames in a video could solve the problem of the object
ambiguity. Therefore, we propose a novel model with a
spatial HAN encoder in addition to the action detection

encoder.
3 VMT with Spatial HAN Encoder

Figure 2 shows the overview of the proposed model. It
consists of components in VMT baseline model and our
proposed spatial HAN encoder. The temporal representa-
tions only provide motion disambiguation. An additional
spatial encoder can provide object disambiguation. We
first introduce the VMT baseline model in section 3.1. We
then introduce our proposed spatial HAN encoder in sec-
tion 3.2.

3.1 VMT Baseline Model

Wang et al. [6] provide a strong VMT model for the
VATEX dataset related tasks. We directly use this model
as our VMT baseline model. VMT baseline model mainly
consists of the following three modules:

Source Encoder.
as a sequence of N word embeddings E, the Bi-LSTM

Each source sentence is represented

[14] encoder transforms it into the sentence features U =
{ul SUz, ooy MN}.
Temporal Encoder. The authors use a pretrained 13D

model [11] for action recognition to obtain the visual
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Figure 3 Structure of spatial HAN encoder. r denotes
representation on object, frame and video levels, ¢ denotes
query in attention layers, h,, denotes the hidden state of the

word embedding for query.

features X, then they employ a Bi-LSTM [14] temporal
encoder to transform X into the motion features M =
{mi,my,...,mpn}.

Target Decoder. The sentence embedding from the source
language encoder and the motion embedding from the tem-
poral encoder are concatenated and fed into the target lan-
guage decoder with two attention mechanisms [15].

3.2 Spatial HAN Encoder

Besides temporal encoder and source sentence encoder
in the VMT baseline model, our proposed model contains
an additional spatial encoder. The intuition is that the tem-
poral encoder only provides motion disambiguation. And
an additional spatial encoder can provide object disam-
biguation.

After splitting one video into N frames, we extracted
the object-level spatial features S = {sy, s2,...,sy} of N
frames by Faster R-CNN [16], organized them with video
ID.

HAN [7] framework can capture context and inter-
sentence connections for translation. We propose to use
a spatial encoder with HAN framework, which can extract

contextual spatial information from adjacent frames within
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one video clip. The overview is shown in Figure 3. The
object-level attention layer summarizes information from

all separated objects in their respective frames.

qo = lo(hy) (n
ry = fi(SoftAttention(q,, o)) 2)

where h,, denotes a hidden state of current word embed-
ding. The function [, is a linear layer to obtain the query
q,- We adopt a soft-dot attention [15] to transform object-
level spatial features r,, into respective frame-level spatial
features. Then, We obtain contextual frame-level spatial
features 7 from a transformer encoder layer f; [8].

The frame-level attention layer then summarizes repre-
sentations from all ordered frames to video-level abstrac-

tion ry,:

qar =1y (hw) ©)
ry, = SoftAttention(g s, 7s) “

where [, is a linear transformation, gy is the query for
softdot attention function.
3.3 Target Decoder with Spatial HAN Fea-
tures

Because we have additional contextual spatial HAN fea-
tures for the VMT task, the target decoder contains 3 kinds
of inputs. We use attention mechanism [15] for both sen-
tence embedding U from the source language encoder and
the motion embedding M from the temporal encoder to
obtain sentence representations r,, and motion representa-

tions ry,:

r, = Attention,, (U) (&)
rm = Attention,, (M) 6)

Sentence representations r,,, motion representations r,,
and contextual spatial representations r, are concatenated
and fed into the LSTM [14] layer at each decoding step #:

Ve B = fisem([Ve=15 Fusts Tes Pt ls i) @)

Where h; is the hidden state of the target decoder at
step ¢, r,,; are the sentence representations at step #, 7y,
are the motion representations at step ¢ and r, , are the
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contextual spatial representations at step ¢. fp;—ysm refers
to the LSTM layer.

4 Experiments

4.1 Dataset

‘We utilize the VATEX [6] dataset for the VMT task. VA-
TEX is built on a subset of action classification benchmark
DeepMind Kinetics-600 [17], which consists of 25,991
video clips for training, 3,000 video clips for validation
and 6,000 video clips for public test. Each video clip has
5 parallel English-Chinese descriptions for the VMT task.
The VATEX dataset only provides bilingual corpus and
segment-level temporal motion features, doesn’t provide
object-level spatial features and original video clips. We
recollected 23,707 video clips for training, 2,702 video
clips for validation and 5,461 video clips for public test,
about 10% are no longer available, which means we lack

10% spatial features in the dataset.

4.2 Settings

For the common settings in our proposed approach and in
the VMT baseline model [6], we set the maximum sentence
length to 40, word embedding size to 1,024, and the source
encoder and temporal encoder of both 2-layer bi-LSTM
with hidden dimension of 512. For our proposed spatial
HAN encoder, both object-level and frame-level attention
layer are soft-dot attention layer with a hidden dimension
of 512. The number of layers in the transformer encoder is
6. Each layer uses multi-head attention with 8 heads and a
hidden dimension of 512. The decoder is a 2-layer LSTM
of hidden dimension 1,536. During training, we use Adam
optimizer with a learning rate of 0.001. The vocabulary
size is 10,523 for English and 2,907 for Chinese.

For the baseline model, we adopt text only score and
baseline score. Here "text only’ means we only use source
encoder, 'baseline’ means we use both source encoder and
temporal encoder in the VMT model. We retest these
scores with the same experiment setting in the baseline

model.
4.3 Results

We adopt corpus-level BLEU-4 score as our evaluation
metric. Table 1 shows the scores of each model on the
validation set and the public test set. Our proposed VMT

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).



ex. 1: Chinese (Source): — M AIFE— " EELREPNENLHE,

English (Target): A man plays with a parrot with a yellow head and gray feathers.

VMT baseline: a person is playing with a <UNK> that has a yellow yellow brown brown .
Our method: a person plays with a bird that has a yellow head on it .

ex. 2: Chinese (Source): — & HE B FHT K5, 1S mENt.

English (Target): A middle aged man opens up a fridge and beings to remove items.
VMT baseline: a middle aged man opens a refrigerator and takes it out .

Our method: a middle aged man opens a refrigerator and removes the items out .

ex. 3: Chinese (Source): — P A TF—REI], BRAIII%EFS,

English (Target): A door is opened showing a bathtub and bathroom sink.

VMT baseline: a person opens a door and shows the bathtub and washing the phone .
Our method: a person opens a door and shows the bathtub and washes .

ex. 4: Chinese (Source): —MNSF4 BRI/ NZIZIEEFT F—HE AL,
English (Target): A little girl in a red dress is unwrapping a large present.
VMT baseline: a little girl in a red dress is opening a large present .

Our method: a little girl is opening a large present and is talking to her .

Figure 4 Four examples from Chinese to English translation. Ex. 1: VMT baseline model gives object omission error, which leads
to structural errors. Ex. 2: There is object ambiguity problem in the VMT baseline method. Ex. 3: A wrong object translation in the
VMT baseline model. In the above 3 examples, our method has correct object and description translations. Ex. 4 is a wrong
translation in our method, where some noise information from the video affected the translation.

Table 1 Corpus-level BLEU-4 scores of English to Chinese in Table 2, our method has 6 more correct translations than
translation. - the VMT baseline model. Figure 4 shows the details of
Model Valid Test . .
several example analyses from Chinese to English. We
Text only 29.6 29.6 . . _—
observed that our method can alleviate object ambiguity
VMT baseline 30.6  31.1

and omission problem in the translation, but sometimes
VMT with spatial HAN encoder 31.2 31.3

the auxiliary information from video clips may result in

Table 2 50 translation examples from VMT baseline model wrong translations.
and proposed method. We notice that most errors are from the .
object ambiguity and omission problem. 5 Conclusion
Baseline Our Method

In this work, we propose a VMT system with spatial
Correct 31 37

HAN encoder, which achieves a 0.2 BLEU score improve-
Incorrect 19 13

ment over a strong VMT baseline model. The result shows

. . . the effectiveness of spatial features for object disambigua-
system with spatial HAN encoder achieves 31.2 score on P J g

ion. fi k will f¢ MT li ifi-
the validation set and 31.3 score on the public test set, show- tion. Our future work will focus on V baseline modi

. . . tion, ially the ali t bet , 1
ing 0.2 BLEU score improvement over the VMT baseline cation, especiaty fe augnment between source, tefhpora

and spatial representations.
model. P P

Because the reference sentences in public test set are Acknowledgments
hidden, we divide the former half of the original validation
. o . This work was supported by ACT-I, JST.
set into a new validation set and the latter half into a new
test set to analyze the details of translation results. We References
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