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1 Introduction
Neural machine translation (NMT) [1] is known to give

state-of-the-art translations for a variety of language pairs.
Sub-word segmentation [2, 3] is one of the key reasons
behind it as it enables the NMT model to simulate an infi-
nite vocabulary, thereby eliminating the out-of-vocabulary
problem. Among all proposed sub-word segmentation
methods, byte pair encoding (BPE) [2] is the most com-
monly used approach which is used to learn sub-word sege-
mentation rules from a monolingual corpus. However,
BPE uses a greedy search method to segment words and
often ignores the sequence-to-sequence nature of NMT. To
solve this, researchers have recently proposed a dynamic
programming encoding (DPE) method [4] which uses par-
allel corpora and a neural network to perform sub-word
segmentation. The advantage of DPE is that it employs a
non-greedy search method in addition to being aware of the
translation process by maximizing the probability of gen-
erating the target sentence. Although DPE is slower than
BPE, it consistently outperforms BPE and related methods
[5]. Compared to BPE, DPE tends to give linguistically
intuitive segmentations which can potentially aid in under-
standing the working of NMT models. Thus far, DPE has
been studied in resource-rich situations but its performance
and working in low-resource settings is rather unknown.

The advantage of DPE is also its weakness, especially
in a low-resource setting where parallel corpora sizes are
too small to reliably train neural models. To this end,
we decided to study how DPE works in a low-resource
setting where monolingual corpora and self-supervision
based training objectives are known to be extremely help-
ful [6, 7]. This in turn motivates our novel Self-Supervised

DPE (SSDPE) method that simulates a parallel corpus by
duplicating a monolingual corpus and then training a DPE
model using a self-supervised objective. We use denoising
methods involving token masking to prevent the encoder-
decoder from learning trivial sequence-to-sequence map-
pings. The resultant SSDPE model needs only monolin-
gual corpora, in addition to being source language agnos-
tic. By analyzing the segmentation of words in different
contexts, we found each word is consistently segmented
regardless of its contexts, e.g. DPE has the context-free
property. Motivated by this, we propose a novel Word-level
DPE (WDPE) that uses only monolingual word-frequency
table to train a word segmenter. In the decoding phase,
each unique word only needs to be decoded once, which
lowers the decoding time complexity.

To verify the utility of SSDPE and WDPE, we experi-
ment with 11 Asian languages to English translation using
the the low-resource Asian Language Treebank (ALT) cor-
pus [8] belonging to the Wikinews domain. We observe
that they are comparable, if not better than DPE and BPE
by up to maximum 0.3 BLEU average improvement for
11 language pairs. Our analyses of the compared methods
shows that DPE is actually source language agnostic and
context-free which explains why SSDPE and WDPE works
as well as DPE even without a parallel corpus and context.

2 Related Work
Our work focuses on sub-word tokenization for NMT

where methods such as BPE [2], WPM [9] and Sentence-
piece Model (SPM) [3] are some of the most popular ones.
These methods use greedy search to learn sub-word merge
rules, a fundamental component of sub-word methods, in
a deterministic way. Stochastic variants of BPE called
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BPE-drop [5] and of SPM called SPM-regularization [10]
enable multiple sub-word segmentations of the same word
thereby making the NMT model more robust.

BPE, SPM and the simple character level [11] methods,
despite being effective, are greedy search based methods
that tend to give non-intuitive sub-word segmentations.
DPE [4] addresses this but its reliance on parallel corpora
makes it unsuitable for low-resource settings. Our work
fills in this gap by enabling DPE segmentation using only
monolingual corpora that are easy to obtain and leverage
through self-supervision methods for NLP applications [6,
12].

3 Proposed Method

3.1 Background: DPE

DPE segmentation is performed using an encoder-
decoder model where 𝒙 is the BPE segmented source
sentence input to the encoder, 𝒚𝑐 is the character seg-
mented target sentence input to the decoder. The decoder
produces 𝒚, the DPE segmented target sentence where
𝒛 = (𝑧1, ..., 𝑧M+1) denotes some segmentation indices of
𝒚 and –𝑍 𝑦 denotes all possible segmentations of 𝒚. Note
that the decoder’s output sub-word vocabulary is obtained
using BPE. [4] optimized the exact log marginal likelihood
as follows to learn DPE:

𝑙𝑜𝑔 𝑝(𝒚) =

𝑙𝑜𝑔
∑
𝒛∈ –𝑍 𝑦

𝑒𝑥𝑝

|𝒛 |∑
𝑖=1

𝑙𝑜𝑔 𝑝(𝒚𝒛𝑖 ,𝒛𝑖+1 |..., 𝑦𝒛𝑖−1 ,𝒛𝑖 , 𝒙)
(1)

3.2 SSDPE: Self-Supervised DPE

We propose SSDPE that relies on replacing 𝒙 with 𝒚𝑀

in Equation 1, which is the BPE segmented target sentence
𝒚 with certain tokens being masked thereby making it a
monolingual approach. Consequently, SSDPE training re-
sembles monolingual training tasks such as MASS [6] and
Masked Language Model (MLM) in BERT [12]. In this
paper, we consider the following:
1. SSDPE-LM: A trivial case where 𝒚𝑀 = 𝒚.
2. SSDPE-MASS: Similar to [6], half the tokens in 𝒚 are
masked to give 𝒚𝑀 . The masked tokens are consecutive so
as to enforce the model to learn sequence level information.
3. SSDPE-Mask: Motivated by [12], we keep 15% of the
training sentences unmasked to bridge the gap between

train phase and inference phase. Of the remaining 85%
training sentences, 𝒚, each token has a 15% chance to be
masked thereby yielding 𝒚𝑀 .

3.3 WDPE: Word-level DPE

Based on SSDPE, we propose WDPE where the input
𝒚𝑀 and target 𝒚 are single words rather than sentences.
We split sentences into words in the training corpus to
keep the frequencies of words the same. We consider three
variant methods as in SSDPE: WDPE-LM, WDPE-MASS
and WDPE-Mask.

4 Experimental Settings

4.1 Datasets and Preprocessing

We used the ALT multi-way parallel dataset [8] con-
sisting of 18,088, 1,000 and 1,018 sentences in the train,
dev and test set respectively for 12 languages: Bengali
(bg), English (en), Filipino (fil), Bahasa Indonesia (id),
Japanese (ja), Khmer (km), Lao (lo), Malay (ms), Myan-
mar (my), Thai (th), Vietnamese (vi) and simplified Chi-
nese (zh). We chose this corpus as it represents a realistic
extremely low-resource setting and its multi-way nature
enables us to effectively analyze the properties of our pro-
posed method. As SSDPE needs only monolingual data,
we experimented with 50,000 randomly selected English
sentences from news commentary corpus1）belonging to
the same news domain as ALT, to train SSDPE models.
For WDPE, we split the same news commentary data into
one word one line format.

We used Moses tokenizer [13] to tokenize Vietnamese,
Malay, Indonesian, Filipino and English, Indic NLP to
tokenize Bengali, deepcut [14] for Thai, LaoNLP2） for
Lao, Juman++ [15] for Japanese, Stanford-tokenizer [16]
for Chinese, and tokenized data from WAT for Khmer and
Myanmar [17].

4.2 NMT Model Settings

We used the fairseq framework [18] with the Trans-
former architecture. We did hyper-parameter tuning to
determine optimal vocabulary sizes, number of encoder-
decoder layers and attention heads, as low-resource settings
are quite sensitive to these parameters. As DPE, SSDPE

1） http://data.statmt.org/news-commentary/v14/
2） https://github.com/wannaphong/LaoNLP
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# Method bg fil id ja km lo ms my th vi zh avg

baseline
1 SPM 10.33 23.71 25.49 9.94 16.59 *11.13 27.72 12.77 12.35 18.58 *11.74 16.40
2 BPE 9.90 23.09 25.70 9.42 17.12 10.56 28.19 12.11 13.52 19.94 *12.21 16.52
3 DPE 10.09 24.04 26.66 9.93 17.36 10.56 27.89 12.00 14.05 20.06 10.72 16.67

proposed: SSDPE
4 SSDPE-LM 10.10 23.49 25.15 10.27 17.19 10.49 28.35 11.53 13.70 21.37 *11.79 16.68
5 SSDPE-MASS *10.50 24.28 25.37 10.74 17.00 *11.03 28.25 11.50 14.13 *21.36 *12.11 *16.93
6 SSDPE-Mask 9.35 24.01 25.78 10.07 *17.58 10.88 28.56 11.90 14.01 *21.45 *12.27 16.90

proposed: WDPE
7 WDPE-LM 10.07 24.11 26.45 10.23 *17.52 10.57 28.12 12.20 14.24 21.20 *11.85 *16.96
8 WDPE-MASS *10.42 24.51 26.42 *11.17 *18.01 *11.09 28.60 10.53 13.94 21.15 10.97 *16.98
9 WDPE-Mask *10.38 23.79 25.35 10.26 17.21 10.55 28.34 12.31 14.17 21.37 *12.00 *16.88

analysis
10 DPE-ms 9.03 24.26 26.26 10.35 16.92 10.57 27.89 12.11 13.44 *21.50 *12.26 16.78

Table 1: Asian languages to English MT using various subword segmentation methods. Rows 1-3 show baseline results.
Rows 4-6 show proposed SSDPE results. Rows 7-9 shows results using words as training data. Row 10 uses English
segmentation from Ms-En DPE model. *indicates statistically significant difference (𝑝 < 0.05) from DPE method.

Method ja id

SPM 12.58 26.01
BPE 12.69 28.08
DPE 13.46 29.29
SSDPE-Mask 14.04 28.46

Table 2: Results of English to Asian language MT.
Japanese and Indonesian SSDPE segmenters used 100k
news commentary monolingual sentences.

# of lines # of tokens time (sec)

DPE 18k 615k 341.9
SSDPE-MASS 18k 615k 347.7
WDPE-MASS 30k 81k 58.3

Table 3: Decoding speed of DPE, SSDPE and WDPE
methods of ALT-train set, averaged from 10 runs.

and WDPE use BPE vocabulary, the optimal vocabulary
size is determined based on NMT performance only using
BPE. Consequently, the optimal combination was: vocab-
ulary size of 8,000, 6 layer encoder, 6 layer decoder and 1
attention head (except for Bengali, Filipino, Japanese and
Lao, where 4 encoder layers were sufficient). We keep the
same vocabulary size for SPM. We used one GPU with
batch-size of 1,024 tokens. We used the ADAM optimizer
[19] with betas (0.9, 0.98), warm up of 4,000 steps fol-
lowed by decay, and perform early stopping based on the
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Figure 1: WSDR between DPE segmenters trained on Ja-
En data with different random seeds (red), DPE segmenters
trained on Zh-En and Ja-En (blue).

development set BLEU. Dropout of 0.1 and label smooth-
ing of 0.1 is used. We used layer normalization for both the
encoder and decoder. Decoding is done with a beam size
of 12 and length penalty of 1.4. We reported sacreBLEU
and performed statistical significance test.

5 Results and Analyses

5.1 Main Results: SSDPE and WDPE

First, as shown in rows 1-6 of Table 1, for Asian lan-
guage to English NMT, DPE gives results that are as good
as if not better than BPE and SPM. However, our SSDPE
and WDPE methods can improve over DPE by 0.26 and
0.31 BLEU respectively (significant at 𝑝 < 0.05), aver-
aged over 11 translation directions. For SSDPE methods,
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SSDPE-MASS and SSDPE-Mask give segmentations that
yield better translations as compared to SSDPE-LM, which
shows the advantage of masking based training approaches
over trivial copy based methods. WDPE methods show
better performance than SSDPE, which suggests that sen-
tence contextual information is unnecessary for subword
segmentation. For WDPE, a trivial LM method can give
almost the best result. Next, Table 2 shows that SSDPE-
Mask is better than DPE for English to Japanese NMT but
worse than DPE for English to Indonesian NMT.

Overall, our results show that in a low-resource set-
ting, a parallel corpus dependent DPE model can sim-
ply be replaced with a monolingual corpus dependent SS-
DPE model and still improve translation quality. Further,
a word-frequency table is enough to train the segmenter
rather than sentence-level data.

5.2 Speed Analysis

Because our WDPE method only needs to decode each
unique word once in a corpus, it shows a much faster speed
than DPE as well as SSDPE. As shown in Table 3, the
speed of WDPE is about 5.9x faster than DPE and SSDPE
when decoding the ALT-train set.
5.3 Source Language Agnostic Analy-

sis
We show the DPE method is source language agnos-

tic by both the result of NMT and the analysis of word
segmentations.

As the ALT corpus is multi-way, we can use the English
segmentations obtained by the DPE model from one lan-
guage pair for NMT task of another language pair. When
we used English segmentations from the Malay-English
DPE model and used it to train NMT models for Asian lan-
guage to English translation, we saw (row 10 in Table 1)
that the translation scores are barely affected.

To further investigate this issue, we propose word set dif-
ference rate (WSDR) between two segmenters to compute
the probability that they generate different segmentations
for one word. For a word 𝑊 with frequency 𝑛𝑤𝑜𝑟𝑑 which
has 𝑛 possible segmentations, let 𝑠𝑒𝑔𝑖 and 𝑓 𝑟𝑒𝑞𝑖 be the
segmentation and frequency of the 𝑖𝑡ℎ segmentation. We
define 𝑆 =

∪
𝑖=1...𝑛 [(𝑠𝑒𝑔𝑖 , 𝑓 𝑟𝑒𝑞𝑖)] to be the set of all pos-

sible segmentations where
∑𝑛

𝑖=1 freq𝑖=nword holds true.

Word difference rate (WDR) is defined as:

WDR =

∑ |𝑆1 |
𝑖=1

∑ |𝑆2 |
𝑗=1 freq𝑖 ∗ freq 𝑗 ∗ (1seg𝑖≠seg 𝑗

)
nword2

where S1 and S2 are segmentations of 𝑊 generated by two
segmenters. Then, word set difference rate (WSDR) for a
set of words is defined as:

WSDR =

∑ |𝑤𝑜𝑟𝑑𝑠 |
𝑖=1 WDR(word𝑖) ∗ nword𝑖∑ |𝑤𝑜𝑟𝑑𝑠 |

𝑖=1 nword𝑖
Figure 1 shows the WSDR of sets of words with dif-

ferent frequency ranges in the ALT corpus. Comparing
the red bars (2 Japanese–English DPE segmenters with
random seeds) against the blue bars (Japanese–English
and Chinese–English DPE segmenters), it is clear that the
WSDR rates are similar. This means that DPE model is
actually source language agnostic. We believe this to be the
main reason behind why the SSDPE, which uses masked
language as input, works as well as DPE.

5.4 Context Agnostic Analysis

WDPE works due to the context agnostic property which
means the segmentation of one word is consistent regard-
less of which sentence it is in.

We set 𝑆1 equals to 𝑆2 and calculated WSDR of sets of
words with different frequency. We found for any set, the
WSDR is less than 1%, which means the segmented result
of one word is almost not affected by its context in the
sentence. Furthermore, removing the context slightly im-
prove the segmentation quality, shwon by the comparison
of WDPE and SSDPE in Table 1.

6 Conclusion
We proposed novel SSDPE and WDPE methods for sub-

word segmentation. Experimental results show NMT using
proposed methods are either comparable to or significantly
better than NMT using BPE and DPE. The WDPE method
shows a faster decoding speed compared with the original
DPE method. Our analyses show source language agnostic
and context agnostic property of DPE. Our future work
will focus on the performance of our methods in resource
rich MT tasks as well as on developing a statistical SSDPE
method which will be substantially faster.
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