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1 Introduction 

Traditional dialog state tracking is often formulated as a 

classification problem, where the dialog state is predicted 

as a distribution over a closed set of possible slot values 

within an ontology [1]. By doing so, the tracked dialog 

state which is a summary of current conversation, can be 

directly used for backend database querying or API calls 

in dialog system applications [2]. For example, a virtual 

assistant that helps users to book hotels, may fill a slot 

price_range with three possible values — high / low / 

intermediate defined by the query parameters of the 

backend hotel database. However, this classification 

approach of dialog state tracking may have two main 

disadvantages. First, the system will not be able to handle 

any unseen values beyond the predefined value set. While 

building a classifier that covers all possible values will 

result in impractical annotation and training cost. Second, 

we see that many modern designed databases [3] and 

search engine API can take direct natural language input 

as the search query. A predefined value set will limit the 

user query space and cause the matched results lack of 

variety. 

 

To overcome these limitations, in this paper we explore 

the possibility of a span-extraction approach for the dialog 

state tracking, where the values are no longer constrained 

in a predefined set, but can be any string form as appeared 

in the dialog. The application of this approach is 

illustrated in Figure 1. We formulated our task as a multi-

class multi-span extraction problem, with a goal to 

identify all contiguous spans along with its slot type from 

current user utterance. In this paper, we performed a 

particular case study on hotel booking domain, and set up 

12 slot types that cover most common hotel requirement 

categories. In our system, the extracted spans (or the slot 

values) are then used as input search queries for different 

backend systems. The contribution of this paper is to 

initiate a new case study on this span-extraction dialog   

state tracking, and propose a simple BERT based 

approach for multi-slot multi-span extraction. 

 

 

2 Related work 

Free-form dialog state tracking Considering the 

limitation of traditional predefined slot values setup, free-

form dialog state tracking that allow slots to be filled with 

any string value, have emerged in recent years. In one task 

track of DSTC 8 [2], the authors set up a problem to fill 

slots like depart_date with any string value derived from 

conversation. Others like [4] proposed to use dynamic 

vocabularies to track possible values beyond the 

predefined set. However these problems or approaches are 

still limited in narrow ranges of slot value form, for 

example the value is usually either a specific named entity 

What kind of hotel are you looking for? 
どんなホテルをお探しですか？ 

 

A clean hotel directly connected to the 
station. The price is 10000 yen or less, 
preferably close to the airport. 
きれいで、駅直結のホテル。値段は 1
万円以下、できれば空港からも近い。 

Hotel: clean 
Budget: 10000 yen or less 
Location: directly connected 
to the station / close to the 
airport 

Span extraction 

Dialog state 
Database / 
Search engine 

Query 

Figure 1: An example of span-extraction based 

dialog state tracking for hotel booking dialog system. 

― 1593 ―

言語処理学会 第27回年次大会 発表論文集 (2021年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



 

(movie name, restaurant name), or in a very specific 

format (date, time). In contrast, our problem considers a 

more wide range of possible value forms and span lengths, 

including adjectives, verbs, short phrases or even 

sentences. 

 

Span extraction based approach The span extraction 

based approaches for dialog state tracking tasks have also 

been proposed recently. In the paper [1] the authors 

utilized a question answering (QA) model to predict slot 

value by directly pointing to the value span within the 

conversation. However the conventional QA model they 

used can not be directly applied to our multi-span 

extraction task, because the model output is restricted to a 

single answer span. On the other hand, multi-span QA 

models that capture multiple answer spans have also been 

proposed recently. In the paper [5] the author applied a 

sentence selection approach to identify all sentence-level 

spans, and in another paper [6] the authors casted the 

multi-span task as a sequence tagging problem. Our 

method resembles the latter approach, and we further 

extend the model with multi-label classification, as to 

extract spans for different slot types at the same time. 

 

3 Dataset  

The dialog corpus (Japanese) we used in this paper are the 

same corpus as our previous paper [7]. The data are 

collected between pairs of crowd workers who played 

travel agent and user roles respectively. The data contains 

879 dialogs with 24963 agent and 11792 user utterances 

in total.  

 

Annotation The span annotations are done for each user 

utterance in three steps: 

1. Identify all span ranges for each user utterance. 

2. Label each continuous span with one of the 12 

slot types. 

3. Label each span with Negation flag if the span 

represents a negation. 

The length of span is determined so that each span has 

minimal string length that can be used as an independent 

hotel search query. The 12 slot types represent the 

common categories of the user requirement for the hotels, 

as shown in the y-axis label in Figure 2. 

Negation flag The Negation flag is used for a negative 

match in the database and it can be overlapped with any 

other of the 12 slot types. For example in the following 

utterance: 

  I don’t like a room that is too cluttered. 

  あまりごみごみした部屋は好みではありません。 

The span “too cluttered” is labeled with the slot type Room 

and the Negation flag simultaneously. In this paper we 

treat the Negation flag as one of the class along with 12 

slot types, so that our problem can be framed as a multi-

label classification. 

 

Span statistics There are 12244 spans (including 

Negation) annotated among 6898 user utterances with 

average 1.8 spans for each utterance. The average span 

length is 5.3 characters with the shortest contains 1 and 

the longest contains 43 characters. The slot distribution of 

spans is shown in Figure 2.  

 

4 Experiments 

4.1 Models 

The BERT based pre-training fine-tuning approach has 

achieved great success in almost all types of natural 

language processing tasks. In our experiment we also 

chose BERT as our start point. We incorporated BERT 

with a token classification head on top (a linear layer on 

top of the hidden states output), so that the model outputs 

a series of token-wise labels. This BERT architecture is 

0 500 1000 1500 2000 2500

Facility 施設
Service サービス

Scene シーン
Bath 風呂

Child 子供
Room 部屋

Budget 予算
Food 食事

Guests 人数
Location 立地
Schedule 日程
Hotel 宿全般

Count of annotated spans for each slot type

Figure 2: Distribution of annotated spans over 12 

slot types. 
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also used for other sequence labeling tasks such as 

Named-Entity-Recognition [8]. One modification we 

have done to the model is that we replace the output 

softmax to the binary sigmoid, so that each token can be 

associated with any number of labels. By doing so, we can 

train the Negation as one class along with the 12 slot types, 

and also do not need to add a dummy ‘Outside/None’ class 

for any non-span tokens. 

 

Pre-training We compared two pre-trained BERT in our 

experiment. The first model is the one published in paper 

[9], which is pre-trained with Japanese wikipedia 

containing 18 million sentences. We call this model the 

general model. The second one is an in-domain model pre-

trained with 20 million sentences of hotel reviews 

extracted from hotel booking site jalan.net. The 

pretraining details are described in paper [10]. Both 

models have 32k vocabulary built with Juman++i as the 

Japanese tokenizer and BPE as the subwork tokenizer. 

And both use 12 layers configuration as the original 

BERT-base configuration. 

 

4.2 Experimental Setup 

We split all user utterances into the training, validation 

and test dataset with portions of 70%, 15% and 15% 

respectively, where the training set contains 8254 user 

utterances and the valid / test set contains 1769 user 

utterances. The validation dataset is used for tuning the 

learning rate during training: the initial learning rate is set 

0.00005 and if the loss for the validation dataset increased 

compared to the previous epoch, the learning rate is 

decayed by a rate of 0.7. The total training epochs is 7 and 

batch size is 32. For the model implementation, we use the 

transformers package from Hugging Faceii. We also apply 

the binary sigmoid instead of softmax in the output layer 

for multi-label output, and correspondingly modify the 

loss function to binary cross entropy. 

 

Metrics The F-score used for evaluation is calculated 

token-wisely as following: If we represent the spans in a 

𝑛 -token sentence using a vector  𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) , 

where 𝑦𝑘  is a binary digit with value of 1 if the 𝑘-th 

token is in the span, 0 otherwise. Then the F1 score is 

 
i https://github.com/ku-nlp/jumanpp 

derived from harmonic mean of precision and recall as: 

Precision =
𝒚 ⋅ �̂�

∑ �̂�𝑘
𝑛
𝑘=1

,  Recall =  
𝒚 ⋅ �̂�

∑ 𝑦𝑘
𝑛
𝑘=1

 

where 𝒚  is the true label and  �̂�  is the output of the 

model. To reduce the impact of the class imbalance, in 

evaluation we use the global average over all samples 

ignoring slot types (also known as micro-averaged F1).  

 

5 Results 

One clear conclusion from the result shown in Table 1 is 

that the in-domain BERT model outperforms the general 

model as large as almost 10%, and this improvement is 

most significant in Recall. If we look at the detail score 

for each slot type (Figure 3), a trend can be noticed is that 

the slot types with less training data, the more 

performance improvement is gained. This is not a 

surprising result because intuitively in-domain pre-

training can help downstream fine tuning tasks with prior 

in-domain knowledge, and this effect is more dominant 

when the number of training instances is limited. This is 

also a general observation reported in many other tasks 

such as [11] and [12]. One complete example of dialog 

with its model output can be found in Appendix Table 3. 

 

Table 1: Overview of performance comparison 

 General model In-domain model 

Precision 0.75 0.81 

Recall 0.65 0.77 

Micro-F1 0.70 0.79 

 

 

5.1 Error Analysis 

In Table 2 we listed some typical error outputs from both 

models. From these examples, we can see that the in-

domain model is relatively better at capturing unseen 

domain-specific named entity (example #1) and 

identifying indirect expression of negation (example #2). 

On the other hand the error output tends to be overlong 

(example #3) or with wrong slot types (example #4). One 

possible reason is that the likely overfitting to the domain 

may cause the model too sensitive to certain phrases. And 

also, the ambiguous interpretation of slot types may cause 

ii https://github.com/huggingface/transformers 
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a fluctuation in the annotation, such as the word “place”  

in example #4 can be both interpreted as hotel and 

location. However for using as a search query, these errors 

seem to be minor because the impact on the search result 

will be limited. 

 

Example #5 exposes one limitation of our method, that is 

we do not include any dialog context in the model input. 

In this example, the user utterance is actually a response 

to the agent question “Where are you planning to come 

from?”, and therefore should not be interpreted as the 

location of the hotel. One way to take the dialog context 

into account is to concatenate previous utterances to the 

input with additional segment embedding [8]. We include 

this improvement in our future work. 

 

6 Conclusion 

In this paper we studied a new span-extraction based 

dialog state tracking task, and proposed a BERT-based 

approach for multi-slot multi-span extraction. The 

proposed method allows a slot to take any form of value 

as it is mentioned within the conversation, and therefore 

provides a more dynamic dialog state for querying the 

backend systems. While in this paper we only focused on 

the extraction from current user utterance, we plan to 

expand the model to multiple turns, including reference 

resolution and slot value update, with a better integration 

of dialog context. 
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# User utterance General model output In-domain model output 

1 では上州牛陶板焼つきのプランでお願いします。 食事: -- 食事: 上州牛陶板焼 

I would like to book the plan with the Joshu beef roasted 
on a ceramic plate. 

Food: -- Food: Joshu beef roasted on a 
ceramic plate.  

2 山の眺めがすばらしいですが、少しこじんまりし
過ぎの感じがします。 

宿: 山の眺めがすばらしい 
宿: こじんまりし過ぎ 

宿: 山の眺めがすばらしい 
Neg+宿: こじんまりし過ぎ 

The view of the mountains is great, but it feels a bit too 
small. 

Hotel: The view of the 
mountains is great 
Hotel: too small 

Hotel: The view of the 
mountains is great 
Neg+Hotel: too small 

3 人数は妻と２人でお願いします。 人数: ２人 人数: 妻と２人 

There are 2 people including my wife. Guests: 2 people Guests: 2 people including my 
wife 

4 静かなところがいいなあ。 宿: 静かな 立地: 静かな 

I like a quiet place. Hotel: quiet Location: quiet 

5 都内です。 立地: 都 立地: 都内 

Within Tokyo. Location: Tokyo Location: Within Tokyo 

  
 

  

0
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2000
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ScheduleLocation Hotel Budget Guests Food Room Negation Child Service Bath Scene Facility

# of training tokens General modelF1 In-domain model F1

Figure 3: Comparison of accuracy for each slot type and Negation. Model details are described in Sect 4.1. 

Table 2: Examples of error outputs (errors shown as red underlined). 
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Appendix 

Table 3: An example of complete dialog and its corresponding model output. Here we are using the dialog 

collected in [13]. The slot values appeared in Agent utterances are not extracted by current model (future 

work). 

Speaker Utterance In-domain model output 

Agent いらっしゃいませ。ご利用いただきまして、ありがとうございます。ご宿泊

につきまして、お客様のご希望をお聞かせいただけますでしょうか。 

 

User 子供 2人と一緒に、3人で三重県に行きたいと思っています。11月 13日か

ら 4泊できる宿泊施設を探しています。 

日程：11 月 13 日から 4 泊 

人数：子供 2人/3人 

宿：宿泊施設 

シーン：三重県 

Agent かしこまりました。こちらのご宿泊は観光でのご利用でしょうか？具体的に

泊まりたい場所はお決まりですか？  

 

User 観光です。何といいましたか、サミットが行われた辺りに行ってみたいと思

うのですが。 

シーン：観光 

立地：サミットが行われた 

Agent 伊勢・志摩地方でございますね。こちらですと、風光明媚な海の景色をお楽

しみいただけます。オーシャンビューのお宿はいかがでしょうか？ 

 

User それは素敵ですね。ぜひお願いします。確か観光として遊覧船があったかと

思うのですが。 

立地：遊覧船 

Agent はい、伊勢湾の観光船でしょうか。もしよろしければ伊勢湾沿いのお宿はい

かがでしょうか？ 

 

User 遊覧船乗り場に近い宿がいいですね。子供がまだ小さいので。 立地：遊覧船乗り場に近い 

Agent さようでございますか。お子様が小さいとのことですが、近くに「志摩スペ

イン村」がございます。お子様をお連れになると、4泊でも飽きることなく

喜んでいただけるのではないかと思いますが、いかがでしょうか？ 

 

User 楽しそうです。ぜひ行ってみたいのですが、車の運転ができないので交通手

段がありません。バスなどは運航されているのでしょうか？ 

 

Agent かしこまりました。それでは、スペイン村にバスでアクセスできる場所でお

宿をお探しいたします。お子様とスペイン村を観光されるようでしたら、お

得なテーマパーク入場券付きプランをお探しいたしましょうか？ 

 

User はい、お願いします。宿泊する宿ですが、子供と一緒に入浴できる大浴場が

ある所がいいのですが。 

風呂：子供と一緒に入浴で

きる大浴場 

Agent それでは、大浴場付きのお宿をお調べいたします。お食事は皆さま大人の料

理をご用意してよろしいでしょうか？ 

 

User まだ小学生の子供が 1人いますので、子供用のメニューがあると助かりま

す。それとも、バイキングの方がいいかな。 

人数：小学生の子供が 1人 

子供：子供用のメニュー 

食事：バイキング 

Agent さようでございますか。それでは、皆さまバイキングにして、お子様は子供

料金があるお宿にしましょうか？ 

 

User はい、お願いします。それと最寄駅から送迎をしてほしいのですが。 サービス：最寄駅から送迎 

Agent かしこまりました。最寄り駅から送迎サービスのあるお宿でお調べいたしま

す。 

 

Agent それでは、希望条件に合うお宿をお探しいたします。  
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