

A Span Extraction Approach for Dialog State Tracking:

A Case Study in Hotel Booking Application

Hongjie Shi

Megagon Labs, Tokyo, Japan, Recruit Co., Ltd.

shi.hongjie@megagon.ai

1 Introduction

Traditional dialog state tracking is often formulated as a

classification problem, where the dialog state is predicted

as a distribution over a closed set of possible slot values

within an ontology [1]. By doing so, the tracked dialog

state which is a summary of current conversation, can be

directly used for backend database querying or API calls

in dialog system applications [2]. For example, a virtual

assistant that helps users to book hotels, may fill a slot

price_range with three possible values — high / low /

intermediate defined by the query parameters of the

backend hotel database. However, this classification

approach of dialog state tracking may have two main

disadvantages. First, the system will not be able to handle

any unseen values beyond the predefined value set. While

building a classifier that covers all possible values will

result in impractical annotation and training cost. Second,

we see that many modern designed databases [3] and

search engine API can take direct natural language input

as the search query. A predefined value set will limit the

user query space and cause the matched results lack of

variety.

To overcome these limitations, in this paper we explore

the possibility of a span-extraction approach for the dialog

state tracking, where the values are no longer constrained

in a predefined set, but can be any string form as appeared

in the dialog. The application of this approach is

illustrated in Figure 1. We formulated our task as a multi-

class multi-span extraction problem, with a goal to

identify all contiguous spans along with its slot type from

current user utterance. In this paper, we performed a

particular case study on hotel booking domain, and set up

12 slot types that cover most common hotel requirement

categories. In our system, the extracted spans (or the slot

values) are then used as input search queries for different

backend systems. The contribution of this paper is to

initiate a new case study on this span-extraction dialog

state tracking, and propose a simple BERT based

approach for multi-slot multi-span extraction.

2 Related work

Free-form dialog state tracking Considering the

limitation of traditional predefined slot values setup, free-

form dialog state tracking that allow slots to be filled with

any string value, have emerged in recent years. In one task

track of DSTC 8 [2], the authors set up a problem to fill

slots like depart_date with any string value derived from

conversation. Others like [4] proposed to use dynamic

vocabularies to track possible values beyond the

predefined set. However these problems or approaches are

still limited in narrow ranges of slot value form, for

example the value is usually either a specific named entity

What kind of hotel are you looking for?
どんなホテルをお探しですか？

A clean hotel directly connected to the
station. The price is 10000 yen or less,
preferably close to the airport.
きれいで、駅直結のホテル。値段は 1
万円以下、できれば空港からも近い。

Hotel: clean
Budget: 10000 yen or less
Location: directly connected
to the station / close to the
airport

Span extraction

Dialog state
Database /
Search engine

Query

Figure 1: An example of span-extraction based

dialog state tracking for hotel booking dialog system.

― 1593 ―

言語処理学会 第27回年次大会 発表論文集 (2021年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

(movie name, restaurant name), or in a very specific

format (date, time). In contrast, our problem considers a

more wide range of possible value forms and span lengths,

including adjectives, verbs, short phrases or even

sentences.

Span extraction based approach The span extraction

based approaches for dialog state tracking tasks have also

been proposed recently. In the paper [1] the authors

utilized a question answering (QA) model to predict slot

value by directly pointing to the value span within the

conversation. However the conventional QA model they

used can not be directly applied to our multi-span

extraction task, because the model output is restricted to a

single answer span. On the other hand, multi-span QA

models that capture multiple answer spans have also been

proposed recently. In the paper [5] the author applied a

sentence selection approach to identify all sentence-level

spans, and in another paper [6] the authors casted the

multi-span task as a sequence tagging problem. Our

method resembles the latter approach, and we further

extend the model with multi-label classification, as to

extract spans for different slot types at the same time.

3 Dataset

The dialog corpus (Japanese) we used in this paper are the

same corpus as our previous paper [7]. The data are

collected between pairs of crowd workers who played

travel agent and user roles respectively. The data contains

879 dialogs with 24963 agent and 11792 user utterances

in total.

Annotation The span annotations are done for each user

utterance in three steps:

1. Identify all span ranges for each user utterance.

2. Label each continuous span with one of the 12

slot types.

3. Label each span with Negation flag if the span

represents a negation.

The length of span is determined so that each span has

minimal string length that can be used as an independent

hotel search query. The 12 slot types represent the

common categories of the user requirement for the hotels,

as shown in the y-axis label in Figure 2.

Negation flag The Negation flag is used for a negative

match in the database and it can be overlapped with any

other of the 12 slot types. For example in the following

utterance:

 I don’t like a room that is too cluttered.

 あまりごみごみした部屋は好みではありません。

The span “too cluttered” is labeled with the slot type Room

and the Negation flag simultaneously. In this paper we

treat the Negation flag as one of the class along with 12

slot types, so that our problem can be framed as a multi-

label classification.

Span statistics There are 12244 spans (including

Negation) annotated among 6898 user utterances with

average 1.8 spans for each utterance. The average span

length is 5.3 characters with the shortest contains 1 and

the longest contains 43 characters. The slot distribution of

spans is shown in Figure 2.

4 Experiments

4.1 Models

The BERT based pre-training fine-tuning approach has

achieved great success in almost all types of natural

language processing tasks. In our experiment we also

chose BERT as our start point. We incorporated BERT

with a token classification head on top (a linear layer on

top of the hidden states output), so that the model outputs

a series of token-wise labels. This BERT architecture is

0 500 1000 1500 2000 2500

Facility 施設
Service サービス

Scene シーン
Bath 風呂

Child 子供
Room 部屋

Budget 予算
Food 食事

Guests 人数
Location 立地
Schedule 日程
Hotel 宿全般

Count of annotated spans for each slot type

Figure 2: Distribution of annotated spans over 12

slot types.

― 1594 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

also used for other sequence labeling tasks such as

Named-Entity-Recognition [8]. One modification we

have done to the model is that we replace the output

softmax to the binary sigmoid, so that each token can be

associated with any number of labels. By doing so, we can

train the Negation as one class along with the 12 slot types,

and also do not need to add a dummy ‘Outside/None’ class

for any non-span tokens.

Pre-training We compared two pre-trained BERT in our

experiment. The first model is the one published in paper

[9], which is pre-trained with Japanese wikipedia

containing 18 million sentences. We call this model the

general model. The second one is an in-domain model pre-

trained with 20 million sentences of hotel reviews

extracted from hotel booking site jalan.net. The

pretraining details are described in paper [10]. Both

models have 32k vocabulary built with Juman++i as the

Japanese tokenizer and BPE as the subwork tokenizer.

And both use 12 layers configuration as the original

BERT-base configuration.

4.2 Experimental Setup

We split all user utterances into the training, validation

and test dataset with portions of 70%, 15% and 15%

respectively, where the training set contains 8254 user

utterances and the valid / test set contains 1769 user

utterances. The validation dataset is used for tuning the

learning rate during training: the initial learning rate is set

0.00005 and if the loss for the validation dataset increased

compared to the previous epoch, the learning rate is

decayed by a rate of 0.7. The total training epochs is 7 and

batch size is 32. For the model implementation, we use the

transformers package from Hugging Faceii. We also apply

the binary sigmoid instead of softmax in the output layer

for multi-label output, and correspondingly modify the

loss function to binary cross entropy.

Metrics The F-score used for evaluation is calculated

token-wisely as following: If we represent the spans in a

𝑛 -token sentence using a vector 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) ,

where 𝑦𝑘 is a binary digit with value of 1 if the 𝑘-th

token is in the span, 0 otherwise. Then the F1 score is

i https://github.com/ku-nlp/jumanpp

derived from harmonic mean of precision and recall as:

Precision =
𝒚 ⋅ �̂�

∑ �̂�𝑘
𝑛
𝑘=1

, Recall =
𝒚 ⋅ �̂�

∑ 𝑦𝑘
𝑛
𝑘=1

where 𝒚 is the true label and �̂� is the output of the

model. To reduce the impact of the class imbalance, in

evaluation we use the global average over all samples

ignoring slot types (also known as micro-averaged F1).

5 Results

One clear conclusion from the result shown in Table 1 is

that the in-domain BERT model outperforms the general

model as large as almost 10%, and this improvement is

most significant in Recall. If we look at the detail score

for each slot type (Figure 3), a trend can be noticed is that

the slot types with less training data, the more

performance improvement is gained. This is not a

surprising result because intuitively in-domain pre-

training can help downstream fine tuning tasks with prior

in-domain knowledge, and this effect is more dominant

when the number of training instances is limited. This is

also a general observation reported in many other tasks

such as [11] and [12]. One complete example of dialog

with its model output can be found in Appendix Table 3.

Table 1: Overview of performance comparison

 General model In-domain model

Precision 0.75 0.81

Recall 0.65 0.77

Micro-F1 0.70 0.79

5.1 Error Analysis

In Table 2 we listed some typical error outputs from both

models. From these examples, we can see that the in-

domain model is relatively better at capturing unseen

domain-specific named entity (example #1) and

identifying indirect expression of negation (example #2).

On the other hand the error output tends to be overlong

(example #3) or with wrong slot types (example #4). One

possible reason is that the likely overfitting to the domain

may cause the model too sensitive to certain phrases. And

also, the ambiguous interpretation of slot types may cause

ii https://github.com/huggingface/transformers

― 1595 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

a fluctuation in the annotation, such as the word “place”

in example #4 can be both interpreted as hotel and

location. However for using as a search query, these errors

seem to be minor because the impact on the search result

will be limited.

Example #5 exposes one limitation of our method, that is

we do not include any dialog context in the model input.

In this example, the user utterance is actually a response

to the agent question “Where are you planning to come

from?”, and therefore should not be interpreted as the

location of the hotel. One way to take the dialog context

into account is to concatenate previous utterances to the

input with additional segment embedding [8]. We include

this improvement in our future work.

6 Conclusion

In this paper we studied a new span-extraction based

dialog state tracking task, and proposed a BERT-based

approach for multi-slot multi-span extraction. The

proposed method allows a slot to take any form of value

as it is mentioned within the conversation, and therefore

provides a more dynamic dialog state for querying the

backend systems. While in this paper we only focused on

the extraction from current user utterance, we plan to

expand the model to multiple turns, including reference

resolution and slot value update, with a better integration

of dialog context.

Acknowledgements

We would like to thank Prof. Yuki Arase, Mai Aoki (IR-

ALT) and other Megagon team members for their useful

discussions and feedback.

User utterance General model output In-domain model output

1 では上州牛陶板焼つきのプランでお願いします。 食事: -- 食事: 上州牛陶板焼

I would like to book the plan with the Joshu beef roasted
on a ceramic plate.

Food: -- Food: Joshu beef roasted on a
ceramic plate.

2 山の眺めがすばらしいですが、少しこじんまりし
過ぎの感じがします。

宿: 山の眺めがすばらしい
宿: こじんまりし過ぎ

宿: 山の眺めがすばらしい
Neg+宿: こじんまりし過ぎ

The view of the mountains is great, but it feels a bit too
small.

Hotel: The view of the
mountains is great
Hotel: too small

Hotel: The view of the
mountains is great
Neg+Hotel: too small

3 人数は妻と２人でお願いします。 人数: ２人 人数: 妻と２人

There are 2 people including my wife. Guests: 2 people Guests: 2 people including my
wife

4 静かなところがいいなあ。 宿: 静かな 立地: 静かな

I like a quiet place. Hotel: quiet Location: quiet

5 都内です。 立地: 都 立地: 都内

Within Tokyo. Location: Tokyo Location: Within Tokyo

0

0.5

1

0

2000

4000

6000

ScheduleLocation Hotel Budget Guests Food Room Negation Child Service Bath Scene Facility

of training tokens General modelF1 In-domain model F1

Figure 3: Comparison of accuracy for each slot type and Negation. Model details are described in Sect 4.1.

Table 2: Examples of error outputs (errors shown as red underlined).

― 1596 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

References

[1] Shuyang Gao, et al., "Dialog State Tracking: A

Neural Reading Comprehension Approach,"

Proceedings of the 20th Annual SIGdial Meeting

on Discourse and Dialogue, 2019.

[2] Abhinav Rastogi, et al., "Towards scalable multi-

domain conversational agents: The schema-guided

dialogue dataset," Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 34. No.

05, 2020.

[3] Yuliang Li, et al., "Subjective Databases,"

Proceedings of the VLDB Endowment, 12(11),

2019.

[4] Rahul Goel, et al., "Hyst: A hybrid approach for

flexible and accurate dialogue state tracking,"

Proc. Interspeech 2019, pp. 1458-1462, 2019.

[5] Ming Zhu, et al., "Question Answering with Long

Multiple-Span Answers," Proceedings of the 2020

Conference on Empirical Methods in Natural

Language Processing: Findings, 2020.

[6] Elad Segal, et al., "A Simple and Effective Model

for Answering Multi-span Questions," arXiv

preprint arXiv:1909.13375, 2019.

[7] Hongjie Shi, "A Sequence-to-sequence Approach

for Numerical Slot-filling Dialog Systems,"

Proceedings of the 21th Annual Meeting of the

Special Interest Group on Discourse and Dialogue,

2020.

[8] Jacob Devlin, et al., "Bert: Pre-training of deep

bidirectional transformers for language

understanding," arXiv preprint arXiv:1810.04805,

2018.

[9] 柴田知秀, 河原大輔, and 黒橋禎夫, "BERT に

よる日本語構文解析の精度向上," 言語処理学

会 第 25 回年次大会発表論文集, 2019.

[10] 林部祐太, "知識の整理のための根拠付き自然

文間含意関係コーパスの構築," 言語処理学会

第 26 回年次大会発表論文集, 2020.

[11] Takeshi Sakaki, et al., "BERT Pre-trained model

Trained on Large-scale Japanese Social Media

Corpus," https://github.com/hottolink/hottoSNS-

bert, 2019.

[12] Chi Sun, et al., "How to fine-tune bert for text

classification?," China National Conference on

Chinese Computational Linguistics. Springer,

Cham, 2019.

[13] 林部祐太, "要約付き宿検索対話コーパス," 言

語処理学会第 27 回年次大会発表論文集, 2021.

― 1597 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Appendix

Table 3: An example of complete dialog and its corresponding model output. Here we are using the dialog

collected in [13]. The slot values appeared in Agent utterances are not extracted by current model (future

work).

Speaker Utterance In-domain model output

Agent いらっしゃいませ。ご利用いただきまして、ありがとうございます。ご宿泊

につきまして、お客様のご希望をお聞かせいただけますでしょうか。

User 子供 2人と一緒に、3人で三重県に行きたいと思っています。11月 13日か

ら 4泊できる宿泊施設を探しています。

日程：11 月 13 日から 4 泊

人数：子供 2人/3人

宿：宿泊施設

シーン：三重県

Agent かしこまりました。こちらのご宿泊は観光でのご利用でしょうか？具体的に

泊まりたい場所はお決まりですか？

User 観光です。何といいましたか、サミットが行われた辺りに行ってみたいと思

うのですが。

シーン：観光

立地：サミットが行われた

Agent 伊勢・志摩地方でございますね。こちらですと、風光明媚な海の景色をお楽

しみいただけます。オーシャンビューのお宿はいかがでしょうか？

User それは素敵ですね。ぜひお願いします。確か観光として遊覧船があったかと

思うのですが。

立地：遊覧船

Agent はい、伊勢湾の観光船でしょうか。もしよろしければ伊勢湾沿いのお宿はい

かがでしょうか？

User 遊覧船乗り場に近い宿がいいですね。子供がまだ小さいので。 立地：遊覧船乗り場に近い

Agent さようでございますか。お子様が小さいとのことですが、近くに「志摩スペ

イン村」がございます。お子様をお連れになると、4泊でも飽きることなく

喜んでいただけるのではないかと思いますが、いかがでしょうか？

User 楽しそうです。ぜひ行ってみたいのですが、車の運転ができないので交通手

段がありません。バスなどは運航されているのでしょうか？

Agent かしこまりました。それでは、スペイン村にバスでアクセスできる場所でお

宿をお探しいたします。お子様とスペイン村を観光されるようでしたら、お

得なテーマパーク入場券付きプランをお探しいたしましょうか？

User はい、お願いします。宿泊する宿ですが、子供と一緒に入浴できる大浴場が

ある所がいいのですが。

風呂：子供と一緒に入浴で

きる大浴場

Agent それでは、大浴場付きのお宿をお調べいたします。お食事は皆さま大人の料

理をご用意してよろしいでしょうか？

User まだ小学生の子供が 1人いますので、子供用のメニューがあると助かりま

す。それとも、バイキングの方がいいかな。

人数：小学生の子供が 1人

子供：子供用のメニュー

食事：バイキング

Agent さようでございますか。それでは、皆さまバイキングにして、お子様は子供

料金があるお宿にしましょうか？

User はい、お願いします。それと最寄駅から送迎をしてほしいのですが。 サービス：最寄駅から送迎

Agent かしこまりました。最寄り駅から送迎サービスのあるお宿でお調べいたしま

す。

Agent それでは、希望条件に合うお宿をお探しいたします。

― 1598 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

