
Prompting Candidate Words for Refined Word-Level Quality
Estimation

Yizhen Wei1　Takehito Utsuro1　Masaaki Nagata2

　1Deg. Prog. Sys.&Inf. Eng., Grad. Sch. Sci.&Tech., University of Tsukuba
2NTT Communication Science Laboratories, NTT Corporation, Japan

Abstract
Based on refined word-level QE, we propose a new func-

tion that prompts candidate words for replacement and in-
sertion. In order to implement such a function, we mod-
els prompting candidate words as a blank infilling task.
Methodologically, we adopted several pre-trained language
models including BERT, XLM-R, and mBART to solve
the task. En-Zh experiments using a small-scale manu-
ally annotated dataset and a large-scale pseudo dataset are
conducted. Best performance reaches 34.11%, indicating
that over one-third of the blanks whose answers can be
correctly prompted by our model.

1 Introduction
Post-editing refers to the process of editing a rough

machine-translated sentence (MT) into a correct one.
There are many methods for post-editing assistance to

help post-editors doing their work. Schwartz et al. [8] re-
vealed the importance of word alignment for post-editing
assistance as showing alignment statistically significantly
improves the post-editing quality. However, simple word
alignment fails to tell where translation errors are. Original
word-level quality estimation (word-level QE) is another
traditional method for post-editing assistance [9]. This
task outputs QE tags expressed as OK or BAD. However,
such a dualistic judgement is not enough because BAD is
too ambiguous for post-editors to determine a specific oper-
ation. Wei et al. [10] proposed a new task that incorporates
source-MT word alignment (referred to as extended word
alignment) with the original word-level QE [9]. They suc-
ceeded in indicating specific operations for post-editors,
which is believed to be an improvement for post-editing ef-
ficiency. We consider their task as refined word-level QE.
Nevertheless, refined word-level QE only points out where
certain operations including replacement, insertion, and

deletion should be done. For an operation like insertion or
replacement, post-editors still need to think for themselves
about specific content to be inserted into MT.

Based on refined word-level QE, we take a step further,
proposing a novel downstream function which prompts
a list of candidate words for replacement and insertion.
To implement it, we trained pre-trained language models
including BERT [3], XLM-RoBERTa [1] (XLM-R), and
multilingual BART [5] (mBART) for blank infilling task.

We conduct En-Zh experiments to prove the feasibility of
our method. Results show that the best model pre-trained
by a large pseudo dataset successfully prompts correct an-
swers for more than one-third of the blanks in the test set.
2 A Useful New Function for Refined
Word-Level QE

2.1 Original and Refined Word-Level QE

According to Specia et al. [9], word-level QE is a task
that takes a pair of a source sentence and its machine-
translated counterpart (MT) as input. In the original set-
tings, word-level QE outputs QE tags for source words,
MT words and gaps between MT words (MT gaps). All
those tags are expressed either as OK or BAD.

Regarding the fact that BAD is ambiguous and cannot
indicate specific operations, Wei et al. [10] proposed a
method that incorporates extended word alignment with
original word-level QE. In the proposal of Wei et al. [10],
they adopted a supervised method based on multilingual
BERT [3] proposed by Nagata et al. [6] to extract extended
word alignment. They illustrated a user interface showing
extended word alignment and original QE word tags. Ac-
cording to them, BAD-tagged words with aligned counter-
part indicate replacement while BAD-tagged null-aligned
words indicate insertion (at the source side) or deletion (at
the MT side). Therefore, post-editors know what opera-
tions to do after seeing the interface.

― 365 ―

言語処理学会 第28回年次大会 発表論文集 (2022年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

!"
!"!"

!"#$% #
!"

$%
#$%

!"#
!"

&
!"!"

!"#$%

!"

!"#$% !"#$%

&'(!"

!"#$%

!"

!"#$%

!"

!"#$%

!
!"

"#$%
!"

&'()
!"

*+#(%
#$%

',-
&'(

-./)
&'(

0.12&%

34
'
)$*

!"

!"#$

%

#$

$

%

Figure 1 Enhancing refined word-level QE by prompting candidate answers for REP-tagged MT words and INS-tagged MT gaps.

To make the previous proposal easier to understand, we
refine BAD into specific tags including REP, INS, and
DEL representing different operations. We refer to such a
task as refined word-level QE.
2.2 Prompting Candidate Words for Refined

Word-Level QE
In terms of post-editing assistance, the usefulness of re-

fined word-level QE can be further enhanced if the function
of prompting candidate words is implemented. Refined
word-level QE succeeds in indicating specific operations,
but an operation like replacement or insertion needs further
assistance. Namely, correct words to be added into the MT
still needs manual consideration.

We formally illustrate the new function we propose in
Figure 1. As it is shown, based on refined word-level
QE, an MT word like “黒い” that is tagged as REP is
a mistranslation to be replaced. Instead of asking post-
editors to come up with correct translations on themselves,
our system prompts several candidate answers. Among
those candidate answers, there is an appropriate one “白
い”. Same process could be applied to INS-tagged MT
gaps such as the one between “猫” and “が好き”.

We believe that prompting candidate words for REP-
tagged and INS-tagged elements in refined word-level QE
makes a system for post-editing assistance more useful.

3 Methodology

3.1 Multi-Candidate Blank Infilling

We model the task that prompts candidate words as a
blank infilling task. Generally, blank infilling is a task that
takes a sentence with some spans substituted by blanks as
input. Models are trained to fill in the blanks with proper
words to restore the original sentence.

In our case, when given a pair of source sentence and MT
along with refined word-level QE tags, it is clear that REP-
tagged MT words and INS-tagged MT gaps are positions
where new content should be added. Therefore, we can
turn those elements into blanks, training models to fill
in the blanks with correct answers. Moreover, keeping
DEL-tagged MT words in the context is meaningless (even
adding noise), so that we remove them. For example, if we
are given a pair of source sentence and MT like Figure 1
shows, we could build a blanked version of MT as follows “
私は [blank]猫 [blank]が好きだ”. Here, [blank] stands
for a special token. Note that we also want the model to
output multiple candidates with high probability. We will
describe the specific implementation in the next sections.

3.2 Blank Infilling with Encoder Architecture

We firstly introduce approaches based on pre-trained
language models of transformer encoder architecture.

Masked language model [3] (MLM), the representative
task to pre-train BERT, is a simple approach for blank in-
filling. The input sequence of MLM is a monolingual sen-
tence with partial tokens masked. Because the input must
be monolingual, we cannot incorporate source sentence
which contains important information for post-editing.

To address this issue, we have also tried translation lan-
guage model [2] (TLM) based on XLM-R [1]. TLM takes
a pair of concatenated parallel sentences with some to-
kens masked as input.1）TLM evolves from MLM but the
model is trained to attend to not only intra-lingual but also
inter-lingual information to unmask tokens. In our case, by
inputting a concatenation of source sentence and blanked
MT, we expect the model to be able to mimic human post-

1） Note that being different from the original TLM, only MT tokens
are masked in our case.

― 366 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

!

!

!

!

!

!

!

!

!

!

!

!

!"#$

!"#$%&&!" !'%&# !'%&$%& ' !$()%

!"

"#$%

!

#$

$

!

!"#$%&&!" !'% !'% # !'% !'% $%& ' !$()%

!"#$%&&!" !'% !'% !'% # !'% !'% !'% $%& ' !$()%

Try different

mask number

for a blank

1.!"

2.!

...

!"#"$%&%'()*+&$,-./.,%"!&,$0'!!&

'1%(1%&'2&,##&3,!4&!"%%/-5!

1.#$

2.#%&

...

!"#$%&'()*

Respective top-10 candidates

under different mask settings

(a) Blank infilling with BERT

!"#$%

!"#$%%!" &'(%# &'($%& ' !"#$!"#$%$&$'()"$!*"#
!"#$%%!" &'(%&'(%%# &'(%&'($%& ' !"#$!"#$%$&$'()"$!*"#

!"#$%%!" &'(%&'(%&'(%%# &'(%&'(%&'($%& ' !"#$!"#$%$&$'()"$!*"#

!

!

!

!

!

!

!

!

!

!

!

!

!"

"#$%

!

#$

$

!

1.!"

2.!

...

1.#$

2.#%&

...

!"#$%&'()*+,-./&

(b) Blank infilling with XLM-R

Figure 2 “[M]” in the input sequences stands for mask token. Some text for illustration in (b) is omitted. Please refer to (a).

editors, using the source sentence as reference.
Both approaches based on transformer encoder archi-

tecture have a same issue. There might be multiple words
(multiple tokens of course) corresponding to a blank token.
But output tokens of transformer encoder strictly corre-
sponds to input tokens one by one. As we do not know the
token number of the answer, we do not know how many
mask tokens should be there in the input sequence.

As a solution, we try multiple values2）in parallel. Then,
we select the top candidates with highest token-wise mean
of probability among all output. Figure 2 shows the image
of using BERT and XLM-R to do blank infilling.
3.3 Blank Infilling with Encoder-Decoder Ar-

chitecture
Inspired by Donahue et al. [4], we also developed a

method that utilizes pre-trained language models based
on encoder-decoder architecture to do blank infilling task.
Donahue et al. [4] proposed a monolingual text infilling
framework which output concatenation of answer spans
joined by an answer token after a blanked sentence. Un-
fortunately, their method only supports monolingual text
infilling and they trained a GPT-2 [7] which is also mono-
lingual. To adapt the method for our purpose, we adopt
multilingual BART [5], an encoder-decoder architecture.
Figure 3 illustrates our idea.

Specifically, we concatenate source sentence and the
blanked MT, keeping blank tokens unchanged. The de-
coder is trained to do beam search and freely decodes mul-
tiple answer sequences which are concatenation of answer
spans corresponding to blanks in blanked MT in order.
Because mBART generates answer sequence freely, we no
longer need to worry about the issue mentioned in Section

2） We tried a range from one to five masks for a blank independently.

3.2. As for multiple candidates, we analyze each answer
sequence and split answer spans in order. For each blank,
we select answers with top sequence-wise frequency as
results. 3）

4 Experiment

4.1 Dataset and Experimental Settings

We generated the training and test sets based on a small-
scale annotated En-Zh datasets for refined word-level QE
following the method described in Section 3.1. As a result,
we obtained 597 pairs of source and blanked MT along
with correct answers for training and 136 pairs for test.

Besides of the training data above, we also created large-
scale pseudo data. Based on randomly sampled 1 million of
sentence pairs from the parallel data provided by WMT20
QE task4）, we randomly blanked out 15%5）of words in a
target sentence to make a blanked MT. That provides us an
additional 0.8 million of sentence pairs.

As for number of candidates, we expect the models to
output top 10 candidate answers which is a reasonable
quantity in practice. For BERT and XLM-R, we simply set
the model to output 10 tokens for each mask. For mBART,
we set number of beams to 10 during beam search.

We used pre-trained language models provided by Hug-
gingface6）. We adopted bert-base-chinese for BERT, xlm-
roberta-large for XLM-R, mbart-large-cc25 for mBART.

3） Note that number of answer spans in a sequence is not necessarily
equivalent to number of blanks because of free decoding. If number
of answer spans is greater, we ignore redundant spans.

4） https://www.statmt.org/wmt20/

quality-estimation-task.html

5） We set the blank probability to 0.15 because we observed such a
probability in the annotated set.

6） https://github.com/huggingface/transformers

― 367 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

!"#$% &'()*+,

!" !"#$$# !"# $%& ' %&'($%)*(

!"#$%&'()*

!"#$%$&$'()"$!*+#$!,"#

+,-./&

!"#$% -+()*+,

'*-('*$./**01$2345$

6704389*:6" 4(

)*4 4(;8<= :+"2*/

"*>7*+-*

!" #$%&'(#$%

! #$%&(#$%

!" #$%

!" #$%&!(#$%

)

$*+, -./0,

!" #

! $

% %

$*+, -./0,

&' (

' $

% %

<!" ?0:+@ A#$?0:+@

B+:01C*

4(;8D

:+"2*/" .(/

*:-5 90:+@

Figure 3 “[B]” stands for the blank token and “[A]” stands for the answer token. Following the settings of mBART, we append
language tokens at the end of source and blanked MT. The first token input for decoding is the token of target language “<ja>”.

The script run_language_model.py from transformers-
v3.3.1 is modified for our own experiments. For pre-
training on pseudo data, we train all models for 2 epochs
with a learning rate of 3e-5. For training on the annotated
data, we train all models for 10 epochs with a learning rate
of 3e-5. All the other hyper-parameters are kept unchanged
as default of the original scripts. All experiments run on
an NVIDIA TITAN RTX (24GB) with CUDA 10.1.

4.2 Experimental Results

We evaluate the performance of models by counting an-
swer spans that exactly match the top 1 candidate answer
(Top-1 Match Rate) or exists in the top K candidate answers
(Top-K Match Rate)7）. Among 136 sentence pairs in the
test set, there are 384 blanks need to be infilled. As the
target language is Chinese, we remove all spaces between
words during evaluation. For each model, we tried both
training on the annotated dataset only, or pre-training on
large-scale pseudo dataset and then training on the anno-
tated dataset.8）The results are shown in Table 1.

According to the result, we confirmed the effectiveness
of pre-training. Except for the top 1 match rate for BERT,
in most cases pre-training on large-scale pseudo dataset
boosts the performance. Nevertheless, the best top-K
match rate of pre-trained BERT reaches 34.11%, which
means that BERT successfully provides a correct candi-
date in its predictions for over one-third of the blanks in
the test set.

7） For mBART, because of possible candidate duplication, we cannot
guarantee that there are same number of candidate answers as beam
number (which is 10 in our experiments) for each blank. That is the
reason we call it Top K rather than Top 10.

8） We have tried to do blank infilling with off-the-shelf BERT and
XLM-R directly. But the performance is very poor.

Table 1 Top-1 and Top-K match rate of all models. “pt” stands
for pre-training.

Model Top-1
Match Rate(%)

Top-K
Match Rate (%)

BERT 31.51 32.55
BERT+pt 30.47 34.11
XLM-R 19.79 22.66

XLM-R+pt 21.88 23.70
mBART 15.36 17.71

mBART+pt 22.92 25.52

As a comparison of different architectures, BERT as
a monolingual model outperforms XLM-R and mBART.
Such a phenomenon is beyond our expectation as we be-
lieve that source sentence is an important reference to pre-
dict candidate answers correctly. It may proves that our
current way to encode source sentence is not proper. In the
future, we would like to investigate into more variants that
exploit information in the source sentence better.

5 Conclusion
In order to improve post-editing assistance efficiency,

based on refined word-level QE, we further propose a new
function that prompts candidate words for those MT words
and gaps tagged as REP and INS. Such a function is mod-
eled as a blank infilling task and we adopted architectures
including BERT, XLM-R, and mBART to solve the task.
Specifically, we generate a large-scale pseudo dataset by
randomly blanking out some tokens as well as a small-scale
manually annotated dataset. Results of En-Zh experiment
shows that our best model can do it for more than one-third
blanks, giving 10 candidate answers in which the correct
one exists.

― 368 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

References
[1] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary,

G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer,
and V. Stoyanov. Unsupervised cross-lingual representa-
tion learning at scale. In Proc. 58th ACL, pages 8440–
8451, 2020.

[2] A. Conneau and G. Lample. Cross-lingual language model
pretraining. In Proc. 33rd NeurIPS, pages 7059–7069,
2019.

[3] J. Devlin, M. Chang, K. Lee, and Toutanova K. BERT: Pre-
training of deep bidirectional transformers for language
understanding. In Proc. 17th NAACL-HLT, pages 4171–
4186, 2019.

[4] C. Donahue, M. Lee, and P. Liang. Enabling language
models to fill in the blanks. In Proc. 58th ACL, pages
2492–2501, 2020.

[5] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvinine-
jad, M. Lewis, and L. Zettlemoyer. Multilingual denois-
ing pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguistics,
pages 726–742, 2020.

[6] M. Nagata, K. Chousa, and M. Nishino. A supervised word
alignment method based on cross-language span predic-
tion using multilingual BERT. In Proc. EMNLP, pages
555–565, 2020.

[7] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

[8] L. Schwartz, I. Lacruz, and T. Bystrova. Effects of word
alignment visualization on post-editing quality & speed.
In Proc. MT Summit XV, 2015.

[9] L. Specia, F. Blain, M. Fomicheva, E. Fonseca, V. Chaud-
hary, F. Guzmán, and A. Martins. Findings of the WMT
2020 shared task on quality estimation. In Proc. 5th WMT,
pages 741–762, 2020.

[10] Y. Wei, T. Utsuro, and M. Nagata. Word-level quality es-
timation for machine translation based on source-mt word
alignment. In Proc. 27th Annual Meeting of the Asso-
ciation for Natural Language Processing, pages 1664–
1668, 2021.

― 369 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

