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Abstract
Each person has a unique personality which affects the

way they feel and convey emotions. Hence, speaker mod-
eling is important for the task of emotion recognition in
conversation (ERC). In this paper, we propose a novel
graph-based ERC model which considers both conversa-
tional context and speaker personality. Our model out-
performs other graph-based models and achieves a perfor-
mance comparable to the current state-of-the-art model.

1 Introduction
Emotion recognition in conversation (ERC) is a task

within the sphere of emotion recognition. The goal of
ERC is to predict the emotion of each utterance in a con-
versation. With the recent advances of dialogue research,
ERC has gained popularity due to its potential to support
downstream applications such as building affective dialog
systems [1] and opinion mining from social media chats [2].

The emotion of an utterance depends on many factors in-
cluding surrounding context and speaker personality. The
same utterance can express different emotions under differ-
ent contexts. On the other hand, the speaker’s personality
and background may affect how we interpret the emotion
of an utterance. For example, in Figure 1, the utterance
“This is great!” can carry either negative sentiment (sar-
castic person) or positive sentiment (not sarcastic). This
difference can be attributed to the different personalities of
speakers.

In speaker modeling, we distinguish between the static
and dynamic states of a speaker. The static speaker state
refers to the average state of a person that remains un-
changed over a long time. On the other hand, the dynamic
speaker state refers to the deviation from the static state in
presence of external stimuli. External stimuli can dictate
and change the speaker’s internal state, which in turn affects

Figure 1 The emotion conveyed by the phrase “This is great”
can either be negative (sarcasm) or positive (in the case that the
person ordered the wrong item). This example is taken from [10].

the emotion displayed by an individual, hence modeling the
dynamic state of a speaker is important for ERC.

In the past few years, Graph Neural Networks (GNNs)
have been used increasingly in ERC. GNNs provide an
intuitive way to model conversations [3] given the inherent
structural flexibility of the graph. The graph structure can
be used to capture the dependency between utterances and
speakers.

Recent works such as DialogGCN [4], RGAT [5],
EmoBERTa [6] and DAG-ERC [3] have modelled conver-
sational contexts using various methods, however they do
not model speaker state explicitly. Whereas ConGCN [7]
and MMGCN [8] models the speaker state explicitly, how-
ever, they use random embedding for initialization and
model just the static aspect.

In this study, we propose a novel graph-based ERC model
which considers both static and dynamic aspects of speaker
state. We utilize a graph which includes past utterance
nodes and explicit speaker nodes to model the interactions
between utterances and speakers in the dialogue. Experi-
mental results on the benchmark MELD dataset [9] verified
the effectiveness of our model regarding both context and
speaker modeling.

2 Related Work
DialogGCN [4] was the first paper to use GNN to model

dialogues. Given an input dialogue, a complete graph
within a fixed context (past and future) window is built.
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Figure 2 Model overview . The target utterance is denoted in yellow color.

Since graph-based neural networks do not take sequen-
tial information into account, RGAT [5] uses relational
positional encodings to improve upon DialogGCN. DAG-
ERC [3] builds a more intuitive graph structure by con-
sidering local and remote information, without using any
future utterance.
EmoBERTa [6] models the speaker state and context by
prepending the speaker names to utterances and insert-
ing separation tokens between the utterances in a dia-
logue, and feeding it to RoBERTa. ConGCN [7] explic-
itly uses speaker nodes, which are initialized randomly.
MMGCN [8] also incorporate randomly initialized speak-
ing embeddings in their model.

3 Methodology

3.1 Problem Definition

In ERC, a conversation is defined as a sequence of ut-
terances {𝑈1,𝑈2, ...,𝑈𝑁 }, where 𝑁 is the number of utter-
ances. Each utterance 𝑈𝑖 is spoken by a speaker 𝑆𝑖 and
has an emotion label 𝑌𝑖 . The goal of ERC is to predict the
emotion label 𝑌𝑡 for a given utterance 𝑈𝑡 .

3.2 Model Overview

Our model consists of three components: Feature extrac-
tor, Graph encoder, and Prediction layer. Figure 2 shows
the overview of our proposed model.

3.3 Feature Extraction

We use pretrained RoBERTa [11] as our feature extrac-
tor. Inspired by EmoBERTa [6], we feed the following
sequence to RoBERTa for each utterance 𝑈𝑖 with speaker
𝑆𝑖 (as shown in Figure 2):

[𝐶𝐿𝑆]𝑆𝑖 : 𝑈𝑖 [𝑆𝐸𝑃] (1)

For each utterance 𝑈𝑖 , we take the output vector of
RoBERTa corresponding to the [CLS] token as the utter-
ance embedding ℎ𝑢𝑖 . In addition, we extract the RoBERTa
output vector corresponding to the speaker token 𝑆𝑖

1）as
speaker embedding ℎ𝑠𝑝𝑖 .

3.4 Graph Encoder

3.4.1 Graph Construction

For a target utterance 𝑈𝑡 in the dialogue, we build a
graph 𝐺 = (𝑉, 𝐸) to model the information flow in a con-
versation, where 𝑉 denotes the set of nodes and 𝐸 is the
set of edges.

The graph 𝐺 contains two types of nodes:

• Utterance node: We consider the target utterance𝑈𝑡

and up to𝑤 utterances preceding𝑈𝑡 as past utterances.
• Speaker node: We consider the unique speakers of

the target and past utterances.

1） We consider the first token after [CLS] as the speaker embedding.
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Figure 3 Graph Structure.

The set of nodes can be represented as:

𝑉 = {𝑈 𝑗 } 𝑗=𝑡𝑗=𝑡−𝑤 ∪ Uniq({𝑆 𝑗 } 𝑗=𝑡𝑗=𝑡−𝑤) (2)

where the function Uniq() returns all the unique elements
in a set.

Our graph contains two types of edges, given by:

• Utterance-Utterance Edge: We connect each utter-
ance to its previous utterance. These model the effect
of past utterance on the present utterance. These are
given by 𝐸𝑢𝑢 = {(𝑈 𝑗−1,𝑈 𝑗 )} 𝑗=𝑡𝑗=𝑡−𝑤+1

• Utterance-Speaker Edge: We connect each utter-
ance 𝑈 𝑗 to its corresponding speaker 𝑆𝑘 . The set
of utterance-speaker edges are denoted as 𝐸𝑢𝑠 =

{(𝑈 𝑗 , 𝑆𝑘)} 𝑗=𝑡𝑗=𝑡−𝑤 . These edges model the effect of
speakers on the utterances.

The set of edges can be given by:

𝐸 = 𝐸𝑢𝑢 ∪ 𝐸𝑢𝑠 , (3)

Figure 3 illustrates an example of the constructed graph
with a target utterance 𝑈4 (colored in yellow) and 3 past
utterances. 𝑈1 and 𝑈3 are spoken by speaker 𝑆1, while 𝑈2

and 𝑈4 are spoken by 𝑆2.

3.4.2 Node Initialization
We initialize the utterance and speaker nodes as follows:

• Utterance node : 𝑢0
𝑖 = ℎ𝑢𝑖 ∀𝑖 ∈ [𝑡 − 𝑤, 𝑡]

• Speaker node : 𝑠0
𝑗 = 𝑎𝑣𝑔(ℎ𝑠𝑝𝑖 ) ∀𝑖 spoken by 𝑆 𝑗 .

Since there is only one speaker node for each unique
speaker, we average all the embeddings for each unique
speaker and use the averaged embedding to initialize the
Speaker node.

3.4.3 GCN-based graph encoding layers

After constructing and initializing the graph, we feed
it to the Graph Convolutional Network (GCN) [12] based
encoding layers, which update node representation consid-
ering the graph structure.

For each GCN layer, the layer-wise propagation rule is:

𝐻𝑙+1 = 𝜎(𝐴∗𝐻𝑙𝑊 𝑙) (4)

where:

• 𝐻𝑙 : Matrix for layer 𝑙, with all the node embeddings
row wise, of size 𝑁 × 𝐷. (𝑁: number of nodes, 𝐷:
embedding size)

• 𝐴∗ = 𝐴 + 𝐼, 𝐴 is adjacency matrix and 𝐼 is identity
matrix.

• 𝑊 𝑙 , are the weights for 𝑙-th layer.

We use GCN to get the updated representation of the
nodes in 𝐺. After being processed by 𝐿 layers of GCN,
the final utterance and speaker node representations are
denoted as: 𝑢𝑙𝑖 and 𝑠𝑙𝑗 . 𝑠𝑙𝑗 models the dynamic speaker
state under the current dialog context.

3.5 Emotion Classification

Finally, we concatenate the initial and the final node
embedding (embedding after the 𝐿-th GCN layer) of target
utterance and feed it through a feed-forward network to
classify emotions.

𝑃𝑡 = softmax(𝐹𝐹𝑁 (𝑢0
𝑡 | |𝑢𝑙𝑡 )), (5)

𝑌 ∗
𝑡 = argmax(𝑃𝑡 ), (6)

Here, | | denotes the concatenation operation, 𝐹𝐹𝑁 is the
feed-forward neural network layer, and 𝑃𝑡 is the probability
distribution for the predicted emotion.

3.6 Training Objective

We use the standard cross-entropy along with L2-
regularization as the measure of loss (l):

l= −
𝑀∑
𝑥=1

𝑁𝑥∑
𝑡=1

log 𝑃𝑥,𝑡 [𝑌𝑥,𝑡 ] + 𝜆 | |𝜃 | |2, (7)

Here, 𝑀 is the total number of training dialogues, 𝑁𝑥

is the number of utterances in the 𝑥𝑡ℎ dialogue, 𝑌 ∗
𝑥,𝑡 and

𝑌𝑥,𝑡 are the predicted probability distribution of emotion
labels and the truth label respectively for utterance 𝑗 of the
dialogue 𝑥. 𝜆 is the L2-regularization weight, and 𝜃 is the
set of all trainable parameters.

4 Experiment

― 35 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Train Dev Test
# Utterance 9,989 1,109 2,610
# Dialogue 1,039 114 280

Table 1 Statistics for the MELD dataset.

4.1 Dataset

We evaluate our model on the benchmark Multimodal
EmotionLines Dataset (MELD) dataset [9]. MELD is a
multi-modal dataset collected from the TV show Friends.
There are 7 emotion labels including neutral, happiness,
surprise, sadness, anger, disgust, and fear. Since this is an
imbalanced dataset, weighted F1 is used as the evaluation
metric. The statistics of MELD are shown in Table 1.

4.2 Experimental Settings

The feature extractor used is RoBERTa-large[11] The
model is trained for 10 epochs, batch-size is set to be 8,
and the learning rate is set at 1e-6. The model with the
highest weighted F1 on the validation set is selected for
evaluation. The past context is set to be 3 utterances and
the number of GCN layers is set to be 2. The size of hidden
features is 1024. Also, we report the average score of 3
random runs on the test set.

5 Results and Analysis

Compared Methods We compare our proposed model
with several baselines and previous works. The overall re-
sults are reported in Table 2.
First, we compare our model to the baseline RoBERTa
models. In RoBERTa (no context), the utterance alone
is used as input to the pretrained RoBERTa model. In
RoBERTa (w/ modified input), we uses inputs as given by
Equation 1. Our proposed method performs significantly
better than both RoBERTa baselines. This shows the ad-
vantage of the graph encoding mechanism.
Next, we compare our model with other GNN-based mod-
els: DAG-ERC, DialogGCN and RGAT. For fair compari-
son, we use the models which use RoBERTa as the feature
extractor. The authors of DAG-ERC re-implement Dialog-
GCN and RGAT using RoBERTa as feature extractor, we
use the scores reported by the DAG-ERC paper. Our model
outperforms all these models, proving the advantage of us-
ing explicit speaker nodes to model conversations.
Finally, we compare our results with the state-of-the-art

Model Weighted F1

RoBERTa (no context) 0.635
RoBERTa (w/ modified input) 0.641

DAG-ERC 0.636
RGAT (+RoBERTa) 0.628
DialogueGCN (+RoBERTa) 0.630
EmoBERTa 0.656
EmoBERTa (w/o future context) 0.646

Proposed 0.652

Table 2 Comparison with other models.

Method Weighted F1

Proposed 0.652
Proposed (w/o speaker nodes) 0.646
Proposed (speaker node w/ random .init) 0.644

Table 3 Impact of speaker modeling.

model, EmoBERTa. Our model achieves comparable per-
formance with EmoBERTa. However, EmoBERTa uses
both past and future utterances as context, whereas we
only use the past utterances as context.Under the condition
that the past utterances are allowed, the proposed model
outperforms EmoBERTa (w/o future context).

Impact of speaker modeling To investigate the im-
pact of the speaker modeling on the performance, we eval-
uate our model by removing speaker nodes and by ran-
domly initializing speaker nodes. The results are shown
in Table 3. Removing speaker nodes reduces the perfor-
mance significantly, which confirms our hypothesis that,
modelling speaker states is important. Whereas randomly
initializing speaker nodes results in a performance which
is comparable to using utterance nodes only.

6 Conclusion
We proposed a novel idea of modeling speaker states

explicitly using a graph for emotion recognition in conver-
sation (ERC). Experiments showed that our model achieves
comparable results with the state-of-the-art model and out-
performs other graph-based models. In addition, empirical
results illustrated the effectiveness of explicit speaker mod-
eling.
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