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Abstract

In this paper, we propose a neural-network-based cross-
modal retrieval method on historical materials. We begin
by collecting a multi-modal historical dataset from Na-
tional Museum of Japanese History D The dataset includes
over 18k textual descriptions and 79k images. To evaluate
the performance of our methods, we perform cross-modal
image-to-text and text-to-image retrieval tasks. The exper-
imental results show that the proposed method performs
well in both retrieval tasks on historical materials com-

pared with the random baseline.
1 Introduction

With the rapid advancement of digitization, large-scale
multi-modal data of historical materials, such as images
and texts, have become available on the web. Conse-
quently, cross-modal retrieval of historical materials plays
an important role in assisting researchers to study them.
Cross-modal retrieval is a technique to perform retrieval
tasks across multiple modalities, such as text-to-image and
vice versa. In recent years, the development in the field
of vision-and-language has accelerated research on cross-
modal retrieval tasks with remarkable performance. In this
paper, we apply the state-of-the-art cross-modal retrieval
methods to historical materials and demonstrate the cross-
modal retrieval system.

For historical materials, there are several kinds of cor-
responding textual data, including the material name, col-
lection name, the designation, the quantity, the material

quality, the scale, the production date, the place of use, the

1) https://www.rekihaku.ac.jp/index.html
(accessed on 2021/12/28).
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Figure 1 Examples of image-to-text and text-to-image retrieval
tasks. Retrieved results in the red boxes are the associated ones
with the query in the left.

material id, and the notes. In this paper, we choose the
material name, the collection name, and the notes as the
three main textual features because we consider that these
features are the most important to represent the historical
material.

Figure 1 shows an overview of image-to-text and text-to-
image cross-modal retrieval tasks of historical materials.
The left side is the query and the right side is the retrieved
results. In the image-to-text retrieval task, given an image
of a historical material, we retrieve the relative texts. In
the text-to-image retrieval task, given a text that describes
a historical material, we retrieve the corresponding image.
Note that the ground truth of the query is marked in the red
box.

2 Related Work

The main challenge of cross-modal retrieval is the
modality gap, and the key solution is to generate new rep-
resentations from different modalities in the shared sub-
space, such that semantically associated inputs are mapped

to similar locations.

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Figure 2 An overview of our proposed model.

Subspace learning methods are one kind of the most
widely used methods. They aim to find a commonly shared
subspace where the similarity between different modalities
can be measured. For example, Canonical Correlation
Analysis (CCA) [1] is a linear method that learns the com-
mon space by maximizing pairwise correlations between
two sets of data from different sources. However, because
the correlation of multimedia data in the domain of histor-
ical materials is too complicated to be fully modeled only
by applying linear projections, directly applying CCA over
high-level text and image representations cannot achieve a
reasonable result.

Inspired by the success of deep networks, a variety of
deep-learning-based cross-modal retrieval methods have
been developed. Deep Canonical Correlation Analysis
(DCCA) [2] is a deep-learning-based method to learn com-
plex nonlinear projections. Wang et al. [3] propose a
CNN-based model to map the textual and image data to
a shared subspace. RecipelM [4] proposed a neural em-
bedding model with semantic regularization on a recipe
dataset to get a better understanding of food and recipe.
Garciaetal. [5] compare a CCA model with deep-learning-
based approaches to perform retrieval tasks on the domain
of art paintings. In this paper, we adopt a deep-learning-
based cross-modal retrieval method on historical materials,

which is different from previous works.
3 Retrieval System

Figure 2 shows an overview of our proposed model. The
proposed method consists of two major processes. Firstly,
texts and images are encoded into representations sepa-
rately. Secondly, the representations are fed into symmet-
ric multi-layer perceptrons (MLPs) with ReL.U activation

functions to learn the cross-modal embeddings.
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3.1 Text Encoder

In the input of the text side, we have three types of
data: material name, collection name, and notes. We
propose two different encoders for converting the text data
to vectors: the word2vec-based model and the LSTM-
based model. The output of the text encoder is a 2048-D
vector.

Word2vec Encoder. We use a mean word2vec vec-
tor to represent the textual data. To train a word-level
word2vec model, we tokenize all texts in the dataset using
KyTeaZ). The dimension of the word2vec embedding is
set as 100. Because the number of words is different for
each type of text data, we use the mean word2vec of words
to represent each type of data and concatenate them as a
300-D vector. Then we feed the 300-D vector into a simple
fully-connected neural network to get a 2048-D vector as
the output.

Bi-LSTM Encoder. We build a bidirectional LSTM
model to convert the texts to vectors. The bidirectional
LSTM model considers both forward and backward order-
ings. For each type of data, we train a different bidirectional
LSTM model. The outputs of three LSTM models are con-
catenated as a 300-D vector. As before, the 300-D vector
is fed into a simple fully-connected neural network to get
a 2048-D vector as the output.

3.2 Image Encoder

The input of the image-side is a single image of histori-
cal materials. To convert images into vectors, we employ
ResNet50 [6] pre-trained on ImageNet [7]. We remove the
last fully-connected layer of ResNet50 and use the rest net-
work to convert an image to a 2048-D vector. Like before,

the 2048-D vector is fed into a simple fully-connected neu-

2)  http://www.phontron.com/kytea/
(accessed on 2021/12/28).

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Figure 3 Examples of the dataset.

ral network. As a result, the output of the image encoder
is a 2048-D vector.

3.3 Shared Subspace Learning

Finally, we convert text/image vectors into shared sub-
space using symmetric multi-layer perceptrons (MLPs)
with the ReLU activation functions. To train the model, we
compute triplet margin loss [8], which makes the vectors
in the subspace for a given text-image pair close and oth-
erwise faraway. The triplet margin loss creates a criterion
that measures the triplet loss given a triplet and a margin.
A triplet is composed of an anchor vector a, a positive
vector p, and a negative vector n. The triplet margin loss

is formulated as:
L(a,p,n) =max{d (a, p) — d (a,n) + margin, 0}, (1)

where d(-) is the Euclidean distance between the two vec-

tors, and margin is the hyper-parameter.
4 Experiments

To evaluate our methods, we implement the models and
perform both image and text retrieval tasks, and measure
the performance on our dataset. We also report some

samples of the retrieval tasks.

4.1 Experimental Settings

Dataset. This is the first attempt to tackle cross-modal
retrieval of historical materials, so no datasets exist in this
field; thus we created the Japanese historical dataset of
textual descriptions and corresponding images by crawl-
ing them from the National Museum of Japanese History.
The dataset contains 18,429 historical materials, includ-
ing paintings, calligraphy works, and artifacts. As Figure

3 shows, for each historical material, there is one textual
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Table 1 Dataset splitting.
Partition # Texts # Images
Training 10,174 10,174

Validation 2,180 2,180
Test 2,180 2,180
Total 14,354 14,354

description and more than one image. In total, the dataset
includes over 18k textual descriptions and over 79k corre-
sponding images. The details of dataset splits are shown
in Table 1. The ratio of the training set is 0.7, and the ratio
of the validation set and test set are both 0.15.

Hyper-parameter Settings. For the word2vec en-
coder, we set the embedding size to 100 and use Gensim [9]
to train the word2vec model. For the bidirectional LSTM
encoder, we set the embedding size to 2,048. The hidden
size is 512 and the output size is 2,048. This LSTM en-
coder only has one layer. In the LSTM encoder, we use
three different vocabularies for material names, collection
names, and notes separately. For the symmetric multi-layer
perceptrons (MLPs) with ReL.U activation functions, the
input size and the output size are both 2,048. During train-
ing, we use Adam optimizer with a learning rate of 0.001
and train 35 epochs. The size of the mini-batch is 32. We
set the margin to 0.1 in the triplet loss function.

Evaluation Metrics. To evaluate the performance of
our model on retrieval tasks, we computed two main-
stream evaluation metrics in cross-modal retrieval tasks,
Recall@K (R@K) and median rank (MedR), where R@K
is the recall rate percentage of the target corresponding to
a query appearing in the top K when the set of obtained
images is sorted in descending order by cos similarity, and
MedR is the median of the ranks of the target corresponding
to each query.

4.2 Quantitative Evaluation

We report results on 1,000 image-and-text pairs ran-
domly selected from the test set. For both retrieval tasks,
We compute the MedR and R@K with K being 1, 5, and
10. Our proposed method is compared with the random
ranking baseline. We can see in Table 2 that the proposed
model outperforms the random ranking baseline in image-
to-text and text-to-image retrieval tasks. To be specific, the
word2vec encoder performs better than the bidirectional

LSTM encoder, indicating that the word order is not essen-

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Figure 4 Image-to-text retrieval examples. The ground truth in the retrieved results is highlighted in the red box.
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Figure 5 Text-to-image retrieval examples. The ground truth is highlighted in the red box.

Table 2 Retrieval results on 1,000 samples.

Image-to-text

Text-to-image

MedR (]) R@I(]) R@5() R@I0(T) MedR(]) R@I(T) R@5(T) R@10()
random ranking 500 0.1 0.5 1.0 500 0.1 0.5 1.0
bi-LSTM 26 3.6 14.4 25.8 26 4.3 16.3 28.5
mean word2vec 19 4.9 22.3 36.6 17.5 4.3 229 36.6

tial in our tasks.
4.3 Retrieval Results

We report image-to-text and text-to-image retrieval re-
sults on our best model, the mean word2vec model.

Image-to-Text Retrieval Results. Figure 4 shows two
qualitative positive examples of the texts retrieved. On
the left side is the query images. On the right side is the
top five retrieved texts. In the first example, our model
successfully retrieved the ground truth text in the top one.
In the second example, the ground truth text is returned
as the top five. We can see that our model can learn the
cross-modal embeddings well and retrieve good results.

Text-To-Image Retrieval Results. Figure 5 shows two
qualitative negative examples of the images retrieved. The
left side shows the ground truth image and the query text.
The query includes the material name, collection name, and

notes. The right side shows the top five retrieved images.
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Although the model fails to return the ground truth image
in the top five returned images, it can be observed that the
retrieved images are semantically similar, which indicates
that the our model can learn the semantic information in
the domain of historical materials but there is still much

room for improvement.

5 Conclusion

In this paper, we proposed a model for cross-modal re-
trieval between historical materials. This paper tackled the
cross-modal retrieval of historical materials using deep-
learning-based cross-modal retrieval methods. This work
is the first attempt to tackle this problem, thus we con-
structed the dataset of Japanese historical texts and images,
and evaluated the model’s performance on it. The experi-
mental results showed that the proposed method performs
well in the cross-modal retrieval of historical materials.

This work is licensed by the author(s) under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).
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