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Abstract
In this paper, we present the results of our work on

predicting CTR from search ad texts using an
implementation of handcrafted features, and their use
in several regression models. Our approach is shown to
have some advantages over an approach that uses only
BERT-like learned features.

1 Introduction
1.1 Motivations

The question of optimizing for clicks is an evergreen
matter of interest in the world of online advertising.
While there are many factors involved in between the
creation of ad materials and their final presentation to
the end-user, including bidding for prime positions, and
optimization on the platform side, the use of
click-through rate (“CTR”) as a metric and objective
variable for the entire process is generally accepted.

Many business models exist wherein higher CTR
translates into better remuneration for ad agencies. As
such, models that can predict the CTR of a given set of
parameters can help ad agencies choose between
alternative proposals, minimizing the need for audience
test strategies, reducing workloads, associated costs,
and lead times, and ultimately improve profit margins.

On a related note, a rising trend among advertisers is
the development and use of generative text models and
systems that can automate the production of text for use
in ads, whether as the primary content or as a
component in other ad formats [1]. Some such systems
have been released for use by individuals or small
business owners, who do not necessarily have the
expertise to know what to write, nor the experience to
know what works best. CTR prediction models coupled
to such generative systems can lead to
highly-optimized workflows and results.

That is not to say that human knowledge and
experience is no longer useful. Though CTR prediction
is generally not a part of the traditional ad creation
process, ad creators have always sought to maximize
CTR through their choices and craft. It is my belief that
this somewhat nebulous body of knowledge can be
leveraged to produce a system that lends clarity and
form to the ad creation process better than black-box
models.

1.2 Clarification

Much of the work done on CTR prediction in the
digital ad space appears to be focused on the task of
predicting whether an ad under a given set of
circumstances is going to be clicked or not. Many
popular datasets used for CTR prediction for online ads
(Criteo and Avazu datasets) present this task, with
various metadata variables and anonymized categorical
values, the semantics of most of which are not publicly
known [2, 3].

There appears to be very little publicly-available
work on CTR prediction using the actual text of the
ads. This is not particularly surprising, as ad agencies
and platforms are generally not at liberty to release the
texts alongside performance metrics. Some of the
categorical variables in the aforementioned datasets
may actually be representations of the ad copy texts,
but most researchers still do not have direct access to
the plaintext corpora of particular interest in the
primary task that was the focus of this study.

1.3 Task Definition

The task in question was to predict the CTR of sets
of texts (described in more detail in a later section)
intended for use in text ads, specifically those served
up in relation to a search query on a search engine.

As I touched upon in the section on motivations, one
of the intentions behind the development of this system
was to support our ad creative teams in finding the best
phrasing for ad copy texts that would lead to maximum
profits. Of course, such a system could also be
integrated with a generative text model to rank the
generated texts, providing some insight as to which
texts would provide the best results.

To that end, we were more interested in the effects of
changes in the texts themselves, rather than how they
would perform in specific circumstances, as could be
described by the variables representing the context
surrounding the ad (e.g. (Avazu) site_category,
app_domain) and the user in question (e.g. (Avazu)
device_id, device_ip).

On a related note, considering the advent of the
“cookie-less Internet” [4], approaches that rely on
access to third-party cookies to identify the context and
user in question may be less viable, or at least will

― 1722 ―

言語処理学会 第28回年次大会 発表論文集 (2022年3月)

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



become more challenging. This could mean a shift
away from strategies that target specific user segments
or even specific users, and back towards focusing
efforts on the ads’ contents to maximize clicks. This
was a consideration that partly informed our decision to
focus on the primary task as described.

2 Our Approach
2.1 Handcrafted Feature Extraction

Of central interest to this study was the development
and testing of a feature extractor that used input from
our creative teams, with regards to what they thought
were factors that affected the performance of our ads.

In a preceding internal project, we had the goal of
identifying factors that were adjustable or controllable
within the ad creation process; the idea being that if we
could analyze ads and metrics such that we could tell
which elements contributed to better CTR, our creative
teams could adjust their future work to incorporate
more of those elements. Conversely, elements that
actually tended to decrease CTR were also identified,
and were to be avoided whenever possible in future
work.

A subset of this previous work was directly related to
the text used in banner ads. Although not expressly
developed for the analysis of search ads, we deemed
there was sufficient overlap that the schema could be
used to explicitly extract features that could be used to
gain insight into search ads as well.

The feature extractor developed using this tag
schema was built on aggregations of regular
expressions. When a regular expression representing
certain words or phrases turned up a match, a tag was
assigned to the text in question.

Fig. 1 Example of configuration for a tagger

For any given singular ad, there are multiple text
fields, so each field was tagged separately, such that the
resulting handcrafted feature (hereafter referred to as
“tag-based feature(s)”) column count for a given
expanded search ad was 866 * 6 = 5,196. However, this
was a very large number of sparse dimensions, so it
was reduced by aggregating tags by merging the
features of the 3 ad title fields together and those of the
2 description fields together, such that the resulting
number of tag-based feature columns was 866 * 2 =
1732. The only exception to this is the LightGBM
experiment detailed below, as we ended up applying a
different means of reducing dimensions in that case.

Metadata features were also converted into n-hot
encodings. This amounted to a column count of 964, a
majority of which were representations of the account
IDs associated with the ads.

Fig. 2 Handcrafted feature extraction

These features were extracted and saved to disk, to
reduce the amount of computation and time needed
during training.

Although not explicitly examined in this study, the
handcrafted features are also directly translatable into
outputs that can inform end-users as to what textual
features affect the predicted CTR.

3 Experiments
We performed experiments in several different

paradigms. These were all performed using scikit-learn
or PyTorch on Google Colab instances, generally with
a maximum of 12GB RAM and 16GB VRAM. Input
tensors used in training and validation were also cached
to disk after generation during the first epoch to reduce
processing time.

3.1 Data

We used data collected using our company’s ad
performance tracking systems. Specifically, we used
the metadata, text fields, impression and click counts
for Japanese language expanded text ads on Google,
which were active between 2017/07/01 and
2021/02/24 (the time of extraction), compiled by
month, grouped separately by ad ID and device type.
The individual ad IDs (as opposed to ad account IDs)
were not factored into learning. We also filtered out
instances with fewer than 100 monthly impressions.

Table 1. Data fields used

Metadata Ad account ID, year and month, device
type, network type,

TD Fields Ad title 1, ad title 2, ad title 3,
description 1, description 2
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The functions and limitations of the individual TD
(title and description) fields are explained here: [5].

The total row count was 1,453,181.
Train-validate-test splitting was performed with ratios
of 0.7, 0.2, and 0.1 resulting in 1,017,227 training
rows, 290,637 validation rows, and 145,317 test rows.

3.2 LightGBM

Using the n-hot encoded tag-based features did not
show very promising results in the short time we
devoted to this confirmatory experiment. Instead, we
converted the permutations of the n-hot tag-based
features per TD field and assigned integer values to be
used as categorical value indices. We then performed a
K-fold (n_splits=5, shuffle=True) training regime using
the metadata fields as categorical features and the
categorically-encoded feature fields.

3.3 Multilayer Perceptron (“MLP”)

After experimenting with various network shapes
(partly informed by [6]), layer depths, and node counts,
we achieved the results presented in the next section
with a network with 5 hidden layers of 600 nodes each.
The input used n-hot encoded metadata fields (964
columns) and n-hot encoded TD feature fields (866 +
866); the activation  function was ReLU.

3.4 Fine-tuned DistilBERT
We decided to perform our experiments using

DistilBERT-base-japanese [7]. We selected DistilBERT
because it has been shown to perform only slightly
worse than a comparable BERT model, while reducing
memory and processing requirements by more than
three-quarters, which was in line with one of our
end-goals of producing an interactive web-based tool.

Fig. 3 Including metadata features as text for
DistilBERT

We took the DistilBERT-base-japanese model
publicly available via HuggingFace, and fine-tuned it
using the DistilBertForSequenceClassification [8] class
with num_labels=1. The input for this model was
expected to be text strings, so I converted the existing

n-hot metadata encodings using the column headings,
joined them with [SEP] tokens, and prepended them to
the composite ad title and composite description
strings, also separated with [SEP] tokens.

3.5 Ensemble
A very simple ensemble model that took the results

of predictions from two disparate models and presented
the mean of those values as its prediction was also
developed. The internal models were an instance of the
aforementioned MLP models and a fine-tuned
DistilBERT model. The input for the MLP portion was
n-hot encoded metadata and tag-based features. The
DistilBERT portion was provided with the TD strings
joined by [SEP] tokens.

3.6 Joint Learning
Finally, taking cues from [9], we constructed a joint

learning network using discrete subnetworks for each
modality of data, with another network built on top,
using the concatenated hidden states of the
subnetworks to perform the regression task.

Fig. 4 Diagram of Joint Learning Model

The figure above shows a joint learning model using
3 subnetworks, one for each modality of data. The three
subnetworks and the regressor network (depicted after
the concat step) all use MLP-like networks with
dropout.

4 Results
The results presented in Table 2 are based on tests

using the same test data, with the exception of the
LightGBM experiment which was evaluated with
K-fold cross-evaluation. The ground truth values for
CTR are in decimal form (0.0 ~ 1.0), and the predicted
values are normalized to the same scale before
computing the error values.

The results in Table 3 describe the percentages of
test cases that could be classified under the following
categories:
● Overshoot – predicted value was greater than the

ground truth value by more than 0.05.
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● Undershoot – predicted value was less than the
ground truth value by more than 0.05.

● Acc. (tol .05) – the absolute difference between the
predicted and ground truth values was less than or
equal to 0.05. This includes values categorized as
VAcc.

● VAcc. (tol .005) – the absolute difference between
the predicted and ground truth values was less than
or equal to 0.005.

Table 2. Primary results comparison
Corr. MAELoss RMSELoss

LightGBM 0.7586 0.03000 0.05458
MLP 0.7547 0.02933 0.05428
Fine-tuned
DistilBERT 0.7188 0.03543 0.05866

Ensemble 0.7863 0.03192 0.05065
Joint Learning 0.7660 0.03240 0.05257

Table 3. Secondary results comparison
Over-
shoot

Under-
shoot

Acc.
(tol .05)

VAcc.
(tol .005)

LightGBM 4.09% 12.37% 83.54% 23.49%
MLP 4.71% 10.90% 84.49% 23.23%
Fine-tuned
DistilBERT 12.31% 8.79% 78.90% 15.95%

Ensemble 10.47% 8.27% 81.26% 15.14%
Joint Learning 9.73% 9.06% 81.21% 16.47%
※Corresponding graphs included in the Appendix.

4.1 Discussion
Our intention with the LightGBM experiment was to

provide some baseline for the level of accuracy we can
expect using our features. Though it performed well,
the reduction of dimensions through categorical
encoding of the permutations of the features leaves
some doubt as to how it will behave with
out-of-distribution patterns.

Based on the coefficient of correlation, the ensemble
model performs the best. However, if we consider the
distribution of accurate predictions, it is edged out by
the MLP approach.

On a side note, we also tried an ensemble model
where the DistilBERT submodel was finetuned with
both metadata and TD strings – the very same model
that performed best in our Fine-tuned DistilBERT
experiments. However, it ended up bringing the
performance of the ensemble model down significantly
(corr. 0.6873, MAELoss 0.03935, RMSELoss:
0.06284).

The apparent non-linear relationship between
coefficient of correlation and loss values (also
evidenced by differences in Table 3) may be attributed
to the inherently lopsided distribution of our data.
Almost 93% of our test data had ground truth CTRs of

less than or equal to 0.2 (20%), and the models that
tended to do well in this range tended to do less well
with instances where the ground truth CTR was higher,
leading to lower overall coefficients of correlation.

4.2 Further Research
Note that the experiments as described above are the

best results we achieved thus far for their respective
paradigms. In particular, we feel that more
experimentation can be performed with joint learning
to achieve better results.

Additionally, I also feel that there must be other
network structures that are more befitting of the dense,
continuous values of the DistilBERT-based (and other
BERT-based) features. So far, I’ve implemented
MLP-like networks to make comparison with the other
paradigms relatively simple, but considering the
fundamental differences in the kind of features
involved, I feel that greater expressivity can be
preserved through the use of alternative activation
functions and node distributions.

Additional work on different combinations of
modalities in the ensemble and joint learning
approaches may also lead to more optimal
configurations.

Comparative experiments using embeddings from
n-gram, skip-gram and CBOW feature generators may
also be useful in examining the power of our approach,
although systems using such may be more
computationally intensive due to the curse of
dimensionality.

Some insight may also be gained by comparing the
computational costs and requirements of the different
approaches, especially since we intend to deploy them
in real-time applications where responsiveness is a
strong requirement.

Finally, we are preparing to see if the same approach
can be transferred to other ad formats, especially
considering that the ad format that our data was in is
about to be sunsetted.

4.3 Conclusion
In this paper we have shown that a sufficiently

comprehensive set of simple handcrafted features can
be used to parameterize text ads for the purpose of
predicting click-through rates.

Additionally, the handcrafted features are directly
translatable into human-readable labels, providing
greater transparency and explainability than when
using generalized language models like DistilBERT.
This explainability can be particularly useful in
providing feedback for end-users who use our system
to augment and accelerate their creative workflows.
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Appendix

Plot of LightGBM model test

Plot of MLP model test

Plot of Fine-tuned DistilBERT model test, trained with
TD texts only

Plot of Fine-tuned DistilBERT model test, trained with
metadata and TD texts

Plot of Ensemble model test, using
DistilBERTForSequenceClassification fine-tuned with

TD texts only

Plot of Ensemble model test, using
DistilBERTForSequenceClassification fine-tuned with

both metadata and TD texts.

Plot of Joint Learning model test
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