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Abstract
Wu et al. [1] formalized the task of text-to-table gen-

eration, in which unstructured texts are summarized in ta-
ble form. However, their experiments focus on fine-tuned,
dataset-specific models that show limited performance out-
side of the data they were trained on. As the task assumes
no user query, systems ideally generate valid tables across
various input texts without favoring the layout or table
count of a particular dataset. To address this, we apply
prompted large language models (LLMs) to this task, as-
sessing their suitability as generalizable text-to-table sys-
tems. To more accurately rate outputs, particularly in a
zero-shot setting, we revise the evaluation script from [1]
to align tables by column similarity before scoring.

1 Introduction
Text-to-table generation is a sequence-to-sequence task

in which one or more structured tables are generated based
on the content of an input text [1]. The input can be a
sentence or a longer document. The output is a table that
attempts to represent the information in the input text. An
example using a basketball game report from the RotoWire
dataset [2] can be seen in Figure 1.

In this task, there is no explicit user query. Tables are
designed based only on the input text. This means that
the task is at least partially open-ended, as there may be
multiple valid tables or sets of tables that could accurately
represent an input text. As a result, the “ground truth”
reference tables in the datasets are not definitive.

As the goal of the text-to-table setting is to convert an
input text into a “valid” table that makes sense with respect
to the input, it is a high-level logical task that may depend
on world knowledge and common sense reasoning. Exam-
ples of the sort of inferences that may be done as part of

∗ The work was done when Steven Coyne was an intern at NEC.

Figure 1 Example of an input text and reference table in the
text-to-table task. The table format is adapted from [1], with their
<NEWLINE> separator replaced with line breaks for readability.

the table design process include the following:

Entity Linking: An entity may be referred to in mul-
tiple ways due to nicknames, metonymy, and other
phenomena. A basketball team may be referred to by
its name or by its home city. There may be a switch
between these partway through the text. The model
must resolve these references.
Implicit Reasoning: Some information in a text may
be implied by other facts. If a basketball game is
won 120-90, and the winning team is named, then the
model must assign 90 to the losing team even if no
sentence explicitly describes this.
Contextual Understanding: Depending on the in-
put text, the “best” way to represent information may
differ significantly. In a biographical description, in-
formation may be best summarized as a one-row table
in which other entities are listed only in relation to the
main entity the text is focused on.

Such principles may be learned as part of a fine-tuning
process with respect to a particular dataset of relatively
similar texts and tables. This can be seen in previous works
such as [1] and [3]. However, these models are limited to
the specific datasets that they were trained on and may
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show poor performance on tables that do not resemble the
training data’s format or use similar header names.

Given their strong performance across a number of rea-
soning tasks [4], we hypothesize that LLMs such as GPT-3
[5] can perform this task in a generalizable manner with-
out the need to fine-tune on hundreds or thousands of ex-
amples, taking advantage of principles such as chain-of-
thought reasoning [6] or in-context learning [5] to address
the aforementioned reasoning challenges. To this end, we
experiment with LLM prompting strategies using several
different task decomposition settings, which we apply uni-
formly to each of the text-to-table datasets designated in [1]
to test the generalized performance of the selected models.

2 Related Work
Previous works have examined the use of LLMs to han-

dle table-based tasks. Li et al. [7] apply base and fine-tuned
GPT-3.5 models to diverse table tasks, showing strong per-
formance and generalizability to new data and tasks. How-
ever, their study does not include the text-to-table task
described in [1]. Tang et al. [8] analyze the text-to-table
setting using a variety of prompted LLMs, generating ta-
bles in raw text, LATEX, and HTML. Their work focuses
on the challenges of evaluation in this task, rather than the
generalizability of LLMs compared to seq2seq baselines
across datasets. Our work also differs in using a JSON
format and in its approach to subtask decomposition.

3 Methodology

3.1 Baseline and Datasets

As a baseline, we use a system in [1], a seq2seq model
based on BART [9]. We use the same datasets as their
work: E2E [10], WikiTableText [11], WikiBio [12], and
RotoWire [2]. As WikiBio is large, we use a 10% subset
in our experiments to control costs. We reproduce the ex-
periments in [1] based on their code,1）utilizing the “table
constraint” and table relation embedding features. How-
ever, to align with our other experiments, we modify the
output format and scoring script as described below.

3.2 Output Format

The system described in [1] uses an idiosyncratic format
that differs between the RotoWire dataset and the other

1） Available at https://github.com/shirley-wu/text to table

three used in their study. To unify handling of all datasets,
and hypothesizing that a more common structured format
may be easier for LLMs to generate consistently, we use a
JSON format for our experiments. Furthermore, a JSON
format permits experimentation with JSON-specific output
parameters in our selected LLMs.

3.3 Evaluation

For evaluation, we use the scorer released as part of [1].
This scorer parses tables into relations and scores them
with three metrics: exact match, chrF [13], and BERTScore
[14]. We modify this scoring script to handle JSON inputs
as part of the format change. We also create a JSON conver-
sion script to allow the baseline system outputs reproduced
from [1] to be evaluated by the adapted scorer.

In addition to format adaptations, we further modify the
scoring script to allow tables in a multiple-table setting
to be aligned by similarity. The original script can only
match such tables by name exactly, but this is unlikely in
cases such as a zero-shot table generation, as a table name
difference as small as “Team” and “team” would result in a
score of zero. We implement a table-matching algorithm in
which the candidate tables are aligned by the similarity of
their column names. We use the highest average chrF met-
ric across column names to align tables. We experimented
with using BERTScore for this purpose, but the resulting
scores were slightly lower. We hypothesize that cases like
“Team” vs. “Teams,” in which there is some surface sim-
ilarity, outnumber cases such as “Player” and “Athlete” in
which there are two distinct semantically similar words.

3.4 Our Method

We selected the OpenAI LLMs gpt-3.5-turbo-1106

and gpt-4-1106-preview for our experiments. Since the
outputs of our prompts are in a JSON format, we include
experiments with the response format parameter, per-
forming the gpt-3.5-turbo-1106 experiments in both
text mode and JSON mode to compare them.

We experiment with decomposing the task of table gen-
eration, resulting in the following subtasks. Examples of
the outputs of each can be seen in the Appendix.

Grouping: Entities in the text are listed and sorted
into categories. The input is the text, and the output
is one or more lists of entities wrapped in JSON.
Schema Generation: Based on the input text, and
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Figure 2 Prompt settings in our experiments. Experiments are performed with both few-shot and zero-shot prompts.

optionally the output of a grouping step, the model
generates a list of one or more JSON table schemas.
Each schema is associated with a planned output table.
Table Generation: Based on the input text and one or
more input schemas, potentially the result of a schema
generation step, the model generates tabular JSON.
Each table row is represented by a JSON object, and
all rows in a given table use identical fields. Multiple
tables are nested within a top-level JSON object.

We used a prompt chaining approach in which each of
these subtasks was handled by a separate call to the LLM.
We defined both zero-shot and few-shot prompts for each
step. The zero-shot prompts incorporated chain-of-thought
[6]. In the few-shot prompts, example inputs and outputs
were drawn randomly from the validation set and appended
before the inputs. We used 5-shot prompting for all datasets
in the GPT-3.5 experiments, plus additional 1-shot prompt-
ing for RotoWire. We created two sets of prompts for the
schema generation step: one using grouping step outputs
and one using only the input text.

4 Experiments
Our first experiments focus on the table generation step.

To test the performance of the LLMs in this subtask
alone, we establish a setting where the ground-truth “gold
schema” is extracted from the reference file and provided
along with the input text. Theoretically, this establishes an
upper limit of performance for other pipelines. Following
this, we performed pipeline experiments using generated
schemas, both with and without grouping. This resulted in
six total settings: zero-shot and few-shot versions of each
of the three prompt settings seen in Figure 2.

Due to budgetary constraints, our GPT-4 experiments

were limited to the RotoWire dataset using the schema +
table and group + schema + table settings, using only JSON
mode. We additionally limit few-shot experiments to one
example to control costs. We selected RotoWire due to
its small size and high complexity, being the only dataset
with two-dimensional tables and multiple tables per input.
We selected JSON mode after it showed slightly improved
performance on RotoWire in the GPT-3.5 experiments.

5 Results and Discussion
Results can be seen in Tables 1 and 2. In the “gold

schema” few-shot setting, the scores of the LLMs were
comparable or even superior to those of the respective
baseline fine-tuned model. However, it must be stressed
that this setting involves a leak of ground-truth information.

In settings with generated schemas, the LLM scores
are lower than the baseline model scores. However, the
LLMs achieve moderate performance across all datasets,
suggesting their capabilities are generalizable.

The LLMs display higher performance in few-shot set-
tings compared to zero-shot, and in the case of RotoWire,
higher performance at a higher number of examples.

The results for GPT-3.5 show relatively similar scores
between the JSON and text output formats. Which format
scores higher varies by dataset, with E2E showing higher
scores in text mode and RotoWire showing higher scores in
JSON mode. All differences are under two points, except
for the gold schema zero-shot E2E exact match score.

Overall, the experiments that included a grouping step
produced lower scores than the experiments using only
schema and table steps. In RotoWire, the group + schema
+ table prompt chain performed better than the no-group
chain in a few-shot setting, and the no-group chain per-
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output format: text output format: json
Header F1 Non-Header F1 Header F1 Non-Header F1

System/Prompts Dataset EM Ch BS EM Ch BS EM Ch BS EM Ch BS

Baseline
(Wu et al. 2022)

E2E 99.63 99.70 99.88 97.88 98.00 98.56 99.63 99.70 99.88 97.88 98.00 98.56
WikiBio (subset) 78.70 83.37 91.98 66.83 75.25 74.63 78.70 83.37 91.98 66.83 75.25 74.63
WikiTableText 76.14 81.97 93.13 57.34 66.95 78.18 76.14 81.97 93.13 57.34 66.95 78.18
RotoWire 88.89 91.56 93.14 85.03 87.47 92.97 88.89 91.56 93.14 85.03 87.47 92.97

gpt-3.5-turbo-1106
zero-shot

gold schema + table

E2E 100 100 100 18.46 56.28 69.56 100 100 100 18.54 56.37 69.55
WikiBio (subset) 99.17 99.35 99.63 46.29 71.49 66.25 99.27 99.46 99.78 46.18 71.53 66.22
WikiTableText 99.78 99.81 99.93 46.77 59.69 72.29 99.78 99.81 99.96 46.81 59.69 72.34
RotoWire 99.86 99.86 99.86 75.61 83.74 93.76 100 100 100 75.35 83.62 93.78

gpt-3.5-turbo-1106
few-shot

gold schema + table

E2E 100 100 100 72.63 84.25 88.45 100 100 100 69.01 83.04 87.11
WikiBio (subset) 99.70 99.70 99.71 62.95 80.36 77.49 99.96 99.97 99.97 62.69 80.23 77.38
WikiTableText 99.76 99.79 99.94 59.03 69.63 78.99 99.89 99.90 99.98 58.24 69.02 78.38
RotoWire (1-shot) 99.49 99.50 99.50 85.85 88.73 97.23 99.12 99.13 99.15 85.54 88.32 96.92
RotoWire (5-shot) 100 100 100 88.32 90.37 98.37 100 100 100 88.09 90.19 98.32

gpt-3.5-turbo-1106
zero-shot

schema + table

E2E 21.36 42.11 77.46 2.38 18.08 41.87 21.27 42.04 77.42 2.40 18.09 41.94
WikiBio (subset) 0.00 36.56 58.38 0.00 24.02 28.57 0.00 36.70 58.54 0.00 23.94 28.40
WikiTableText 0.00 27.11 69.66 0.00 18.78 42.51 0.00 26.94 69.72 0.00 18.48 42.79
RotoWire 23.57 49.61 55.10 16.40 40.93 44.19 23.67 49.31 55.19 16.60 40.79 43.96

gpt-3.5-turbo-1106
few-shot

schema + table

E2E 91.70 93.42 98.89 70.23 80.12 86.27 91.65 93.40 98.73 68.47 79.90 85.48
WikiBio (subset) 52.72 64.69 82.42 37.14 50.81 50.07 52.73 64.66 82.45 37.01 50.72 49.94
WikiTableText 45.79 58.67 90.28 29.68 41.17 65.11 46.05 58.74 90.16 29.85 41.23 64.99
RotoWire (1-shot) 52.70 64.69 67.98 51.47 60.96 67.53 53.84 65.67 68.60 52.79 61.95 68.53
RotoWire (5-shot) 73.63 79.96 83.65 73.29 77.21 84.94 73.56 80.02 83.90 73.21 77.18 85.18

gpt-3.5-turbo-1106
zero-shot

group + schema + table

E2E 23.84 41.95 74.00 1.83 16.45 30.86 23.79 42.04 74.11 1.93 16.65 31.23
WikiBio (subset) 0.00 38.02 58.98 0.00 23.75 26.70 0.00 38.79 60.24 0.00 24.04 26.87
WikiTableText 0.14 21.76 75.14 0.08 12.07 32.78 0.13 21.51 74.35 0.10 11.77 32.41
RotoWire 11.16 43.69 39.75 8.43 35.03 28.05 10.95 43.03 39.25 7.97 34.10 27.47

gpt-3.5-turbo-1106
few-shot

group + schema + table

E2E 90.20 92.21 98.52 68.44 78.50 85.43 90.20 92.20 98.38 66.76 78.38 84.61
WikiBio (subset) 54.42 65.58 82.72 35.61 48.93 48.16 54.71 65.86 83.20 35.54 49.12 48.16
WikiTableText 43.48 55.69 90.02 28.45 39.23 64.20 42.86 55.50 89.95 28.18 39.03 64.04
RotoWire (1-shot) 61.29 72.04 76.11 60.53 68.84 76.62 61.51 72.33 76.18 60.53 68.92 76.84
RotoWire (5-shot) 73.47 80.57 84.03 73.23 77.71 85.38 73.55 80.59 84.04 73.11 77.64 85.42

Table 1 Scores for gpt-3.5-turbo-1106. E, Ch, and BS refer to exact match, chrF, and BERTScore, respectively. output format
does not apply to baseline scores, so scores are simply repeated. Scores in bold are higher than the baseline, but it should be noted that
the gold schema setting involves a leak of reference table information. Scores for RotoWire are the average of Team and Player scores.

Header F1 Non-Header F1
System/Prompts EM Ch BS EM Ch BS

Baseline 88.89 91.56 93.14 85.03 87.47 92.97

zero-shot S+T 23.59 53.11 52.70 19.38 43.91 44.14

one-shot S+T 43.35 64.33 66.00 42.26 60.23 63.63

zero-shot G+S+T 16.40 47.85 50.88 13.50 38.38 42.35

one-shot G+S+T 54.67 71.03 73.92 52.16 66.40 71.84

Table 2 Scores for gpt-4-1106-preview on the RotoWire
dataset, using the average of Team and Player scores.

formed better in zero-shot. These trends were seen in both
gpt-3.5-turbo-1106 and gpt-4-1106-preview.

Interestingly, while GPT-4 outperformed GPT-3.5 in the
zero-shot setting, the reverse was seen in the one-shot Ro-
toWire experiments, where GPT-3.5 scored higher.

Finally, the models were able to reliably generate valid
JSON in all experiments, even without using JSON mode.

6 Conclusion
The experiments suggest that our prompt settings can

permit LLMs such as GPT-3.5 and GPT-4 to serve as
relatively generalizable text-to-table generation systems.
While their performance lagged behind the baseline fine-
tuned systems in general, the LLMs show promise in this
task, particularly in few-shot settings in which some basic
information about the target table format can be provided.
Additionally, the models’ high performance in the gold
schema experiments suggests that they may be able to fol-
low user-defined schemas reliably. There remain many
unexplored possibilities for prompting settings in this task,
and our decomposition experiments are by no means ex-
haustive. Future works may explore additional approaches
to prompting, format decisions, and table evaluation.
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A Appendix
Here, we present an example of the JSON format of

our prompt chains, extending the example from Figure 1.
This particular example is converted from the RotoWire
development set, not generated by one of our models.

Input Text
The Wizards launched yet another comeback on Tuesday, this

time feasting on the relatively inexperienced Los Angeles

Lakers. Washington not only overcame a 13 - point fourth

quarter deficit, but won by double digits as well. The

team shot over 51 percent from the field on the night and

outscored LA 37 - 13 in the fourth. At the crux of the win

was All-Star point guard John Wall, who scored 34 points

to go along with 14 assists and four steals. Wall was an

excellent 14 - of - 25 from the field. LA, meanwhile, saw

promising play from its own point guard. Sophomore D’Angelo

Russell filled the stat sheet respectably, shooting 10 -

of - 21 for 28 points to go along with nine assists and

six rebounds. His backcourt partner, Jordan Clarkson, added

another 22 points and shot 10 - of - 19.

Grouping Output Format

{

"Team ":[

"Lakers",

"Wizards"

],

"Player ":[

"John Wall",

"D'Angelo Russell",

"Jordan Clarkson"

]

}

Schema Output Format

[

{

"title ":" Team",

"type ":" object",

"properties ":{

"Team ":{

"type ":" string"

},

"Percentage of field goals ":{

"type ":" integer"

},

"Points in 4th quarter ":{

"type ":" integer"

}

}

},

{

"title ":" Player",

"type ":" object",

"properties ":{

"Player ":{

"type ":" string"

},

"Assists ":{

"type ":" integer"

},

"Field goals attempted ":{

"type ":" integer"

},

"Field goals made ":{

"type ":" integer"

},

"Points ":{

"type ":" integer"

},

"Total rebounds ":{

"type ":" integer"

},

"Steals ":{

"type ":" integer"

}

}

}

]

Table Output Format
{

"Team ":[

{

"Team ":" Lakers",

"Percentage of field goals ":51,

"Points in 4th quarter ":13

},

{

"Team ":" Wizards",

"Percentage of field goals":null ,

"Points in 4th quarter ":37

}

],

"Player ":[

{

"Player ":" John Wall",

"Assists ":14,

"Field goals attempted ":25,

"Field goals made ":14,

"Points ":34,

"Total rebounds ":null ,

"Steals ":4

},

{

"Player ":"D'Angelo Russell",

"Assists ":9,

"Field goals attempted ":21,

"Field goals made ":10,

"Points ":28,

"Total rebounds ":6,

"Steals ":null

},

{

"Player ":" Jordan Clarkson",

"Assists ":null ,

"Field goals attempted ":19,

"Field goals made ":10,

"Points ":22,

"Total rebounds ":null ,

"Steals ":null

}

]

}
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