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Abstract
In recent years, MultiModal Large Language Models

(MM-LLMs) have undergone substantial advancements,
augmenting off-the-shelf LLMs to support MM inputs or
outputs via cost-effective training strategies. In this paper,
we provide a survey aimed at facilitating further research
on MM-LLMs. We outline general design formulations
for model architecture. Furthermore, we review the perfor-
mance of selected MM-LLMs on mainstream benchmarks
and explore future directions. More latest developments in
this field are provided in a real-time tracking website.1）We
hope that this survey contributes to the ongoing advance-
ment of the MM-LLMs domain.

1 Introduction
MultiModal (MM) pre-training has advanced signifi-

cantly, improving performance across various tasks [1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12]. However, as models and datasets
grow, training from scratch becomes computationally ex-
pensive. A promising approach leverages pre-trained foun-
dation models, especially Large Language Models (LLMs)
[13], to reduce costs and improve efficiency, giving rise to
the emerging field of MM-LLMs.

MM-LLMs utilize LLMs as the core, offering robust
language generation, while other foundation models pro-
vide high-quality representations. The main challenge
lies in effectively connecting LLMs with other modali-
ties. Research focuses on improving modality alignment
and human intent alignment through Pre-Training (PT) and
Instruction-Tuning (IT).

Figure 1 illustrates the evolution of MM-LLMs. Investi-
gation of MM-LLMs initially focuses on MM comprehen-
sion and text generation tasks, such as image-text under-
standing (e.g., BLIP-2 [14], LLaVA [15], and MiniGPT-
4 [16]), video-text understanding (e.g., VideoChat [17],

1） https://mm-llms.github.io
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Figure 1 The timeline of MM-LLMs.

Video-ChatGPT [18], and LLaMA-VID [19]), and audio-
text understanding (e.g., Qwen-Audio [20]). Later research
extended MM-LLMs to support specific modality outputs,
including image-text output (e.g., GILL [21], Kosmos-
2 [22], Emu [23], and MiniGPT-5 [24]) and audio-text out-
put (e.g., SpeechGPT [25]). Recent efforts target human-
like any-to-any modality conversion (e.g., NExT-GPT [26])
to reduce errors in cascaded systems.

In this paper, we present a survey on MM-LLM re-
search. We outline general design principles and the train-
ing pipeline. We review benchmark performance of the
latest SOTA MM-LLMs, and propose future research di-
rections. We aim to deepen understanding and inspire the
development of more effective MM-LLMs.

2 Model Architecture
This section details the five components of the general

model architecture and their implementation, as shown in
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Figure 2 The general model architecture of MM-LLMs and the implementation choices for each component.

Figure 2. During training, the Modality Encoder, LLM
Backbone, and Modality Generator are typically frozen,
with optimization centered on the lightweight Input and
Output Projectors, which constitute around 2% of the total
parameters.

2.1 Modality Encoder

The Modality Encoder (ME) is tasked with encoding
inputs from diverse modalities 𝐼𝑋 to obtain corresponding
features 𝑭𝑋, formulated as 𝑭𝑋 = ME𝑋 (𝐼𝑋). Various pre-
trained encoder options ME𝑋 exist for handling different
modalities, where 𝑋 can be image, video, audio, 3D, etc.

Visual Modality For images, there are various op-
tional encoders: NFNet-F6 [27], ViT [28], CLIP ViT [6],
Eva-CLIP ViT [29], BEiT-3 [30], and OpenCLIP [31],
etc. For videos, they can be uniformly sampled to 5 frames,
undergoing the same pre-processing as images.

Audio Modality is typically encoded by C-
Former [32], HuBERT [33], BEATs [34], Whisper [35],
and CLAP [36].

3D Point Cloud Modality is typically encoded by
ULIP-2 [37] with a PointBERT [38] backbone.

Moreover, to handle numerous heterogeneous modal en-
coders, some MM-LLMs, particularly any-to-any ones, use
ImageBind [39], a unified encoder covering six modali-
ties, including image/video, text, audio, heat map, inertial
measurement units, and depth.

2.2 Input Projector

The Input Projector 𝚯𝑋→𝑇 is tasked with aligning the
encoded features of other modalities 𝑭𝑋 with the text fea-
ture space 𝑇 . The aligned features as prompts 𝑷𝑋 are then
fed into LLM Backbone alongside the textual features 𝑭𝑇 .
Given 𝑋-text dataset {𝐼𝑋, 𝑡}, the goal is to minimize the

𝑋-conditioned text generation loss Ltxt-gen:

arg min
𝚯𝑋→𝑇

Ltxt-gen (LLM(𝑷𝑋, 𝑭𝑇 ), 𝑡), (1)

where 𝑷𝑋 = 𝚯𝑋→𝑇 (𝑭𝑋).
𝚯𝑋→𝑇 can be achieved directly by a Linear Projector,

or Multi-Layer Perceptron (MLP), or more complex im-
plementations like Cross-attention and Q-Former [14].
Cross-attention [40] uses a set of trainable vectors as
queries and 𝑭𝑋 as keys to compress the feature sequence to
a fixed length, and then fed them into the LLM. Q-Former
extracts relevant features from 𝑭𝑋 with learnable queries,
and the selected features are then used as prompts 𝑷𝑋.
Meanwhile,

2.3 LLM Backbone

Taking LLMs [41] as the core agents, MM-LLMs can
inherit some notable properties like zero-shot generaliza-
tion. The LLM Backbone produces direct textual outputs
𝑡, and signal tokens 𝑺𝑋 from other modalities (if any).
These signal tokens act as instructions to guide the genera-
tor on whether to produce MM contents and, if affirmative,
specify the content to produce 𝑡, 𝑺𝑋 = LLM(𝑷𝑋, 𝑭𝑇 ),
where the aligned representations of other modalities 𝑷𝑋

can be considered as soft Prompt-tuning for the LLM.
Moreover, some works have introduced Parameter-Efficient
Fine-Tuning (PEFT) methods such as LoRA [42]. In these
cases, the number of additional trainable parameters is ex-
ceptionally minimal, even less than 0.1% of the total LLM
parameter count.

2.4 Output Projector

The Output Projector 𝚯𝑇→𝑋 maps 𝑺𝑋 into features 𝑯𝑋

understandable to the following Modality Generator MG𝑋.
To facilitate alignment of the mapped 𝑯𝑋, the goal is to
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Table 1 The summary of mainstream MM-LLMs. I→O: Input to Output Modalities, I: Image, V: Video, A: Audio, and T: Text.
Model I→O Modality Encoder Input Projector LLM Backbone Output Projector Modality Generator
BLIP-2 I+T→T I: CLIP/Eva-CLIP ViT@224 Q-Former w/ Linear Projector Flan-T5/OPT – –
LLaVA I+T→T I: CLIP ViT-L/14 Linear Projector Vicuna-7B/13B – –
MiniGPT-4 I+T→T I: Eva-CLIP ViT-G/14 Q-Former w/ Linear Projector Vicuna-13B – –
mPLUG-Owl I+T→T I: CLIP ViT-L/14 Cross-attention LLaMA-7B – –
InstructBLIP I+V+T→T I/V: ViT-G/14@224 Q-Former w/ Linear Projector Flan-T5/Vicuna – –
Video-LLaMA I+V+A+T→T I/V: Eva-CLIP ViT-G/14; A: ImageBind Q-Former w/ Linear Projector Vicuna/LLaMA – –
mPLUG-DocOwl ID+T→T I: CLIP ViT-L/14 Cross-attention LLaMA-7B – –
Qwen-VL-Chat I+T→T I: ViT@448 Cross-attention Qwen-7B – –
LaVIT I+T→I+T I: ViT Cross-attention LLaMA-7B – I: Stable Diffusion
MiniGPT-5 I+T→I+T I: Eva-CLIP ViT-G/14 Q-Former w/ Linear Projector Vicuna-7B Tiny Transformer I: StableDiffusion-2
LLaVA-1.5 I+T→T I: CLIP ViT-L@336 MLP Vicuna-v1.5-7B/13B – –
MiniGPT-v2 I+T→T I: Eva-CLIP ViT@448 Linear Projector LLaMA-2-Chat-7B – –
CogVLM I+T→T I: Eva-2-CLIP ViT MLP Vicuna-v1.5-7B – –
Qwen-Audio A+T→T A: Whisper-L-v2 Linear Projector Qwen-7B – –
VILA I+T→T I: ViT@336 Linear Projector LLaMA-2-7B/13B – –
LongVU V+T→T SigLIP + DINOv2 Cross-attention Llama3.2-3B/Qwen2-7B – –

minimize the distance between 𝑯𝑋 and the conditional text
representations of MG𝑋: arg min𝚯𝑇→𝑋

Lmse (𝑯𝑋, 𝜏𝑋 (𝑡)).
The optimization only relies on captioning texts, with-
out utilizing any audio or visual resources 𝑋 , where
𝑯𝑋 = 𝚯𝑇→𝑋 (𝑺𝑋) and 𝜏𝑋 is the textual condition encoder
in MG𝑋. The Output Projector is implemented by a Tiny
Transformer with a learnable decoder feature sequence or
MLP.

2.5 Modality Generator

The Modality Generator MG𝑋 is tasked with producing
outputs in distinct modalities. Commonly, existing works
use off-the-shelf Latent Diffusion Models (LDMs) [43],
i.e., Stable Diffusion [44] for image synthesis, Zero-
scope [45] for video synthesis, and AudioLDM-2 [46, 47]
for audio synthesis. 𝑯𝑋 mapped by the Output Projector
serves as conditional inputs in the denoising process to
generate MM content.

3 Training Pipeline
MM-LLMs’ training pipeline can be delineated into MM

PT stage and MM IT stage. During the PT stage, typically
leveraging the X-Text datasets, Input and Output Projectors
are trained to achieve alignment among various modalities
by optimizing predefined objectives.

MM IT comprises Supervised Fine-Tuning (SFT) and
Reinforcement Learning from Human Feedback (RLHF),
aiming to align with human intents and enhance the inter-
action capabilities of MM-LLMs. SFT converts part of
the PT stage data into an instruction-aware format. Next,
it fine-tunes pre-trained MM-LLMs using the same opti-
mization objectives. After SFT, RLHF involves further

fine-tuning of the model, relying on feedback regarding
the MM-LLMs’ responses (e.g., Natural Language Feed-
back (NLF) labeled manually or automatically) [48]. This
process employs a reinforcement learning algorithm to ef-
fectively integrate the non-differentiable NLF [49, 50].

4 SOTA MM-LLMs
Based on the previously defined design formulations, we

conduct a comprehensive comparison of the architectures
and training dataset scales for current SOTA MM-LLMs,
as illustrated in Table 1.

Trends in Existing MM-LLMs: (1) Progressing
from a dedicated emphasis on MM understanding to the
generation of specific modalities and further evolving into
any-to-any modality conversion; (2) Adopting a More Ef-
ficient Model Architecture, transitioning from complex Q-
and P-Former input projector modules in BLIP-2 and DLP
to a simpler yet effective linear projector in VILA; (3) From
producing foundational multimodal models to leveraging
existing models to achieve more challenging goals and fo-
cus on more specialized problems (e.g., Video-LLaVA →
LongVU).

5 Benchmarks and Performance
To provide a comprehensive comparison, we have com-

piled a table featuring major MM-LLMs across Vision-
Language (VL) benchmarks, as reported in various pa-
pers [14, 51, 52, 53]. Results are presented in Table 2.
Given the numerous benchmarks available, we focus on
evaluating and comparing different MM-LLMs based on
OKVQA, IconVQA, VQAv2, and GQA.

OKVQA requires reasoning with a variety of knowledge
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Table 2 Comparison of mainstream MM-LLMs on VL benchmarks. The red denotes the highest result, and the blue denotes the
second highest result.

Model LLM Backbone OKVQA IconVQA VQAv2 GQA VizWiz SQAI VQAT POPE MMEP MMEC MMB MMBCN SEEDI LLaVAW MM-Vet QBench HM VSR
BLIP-2 Flan-T5XXL (13𝐵) 45.9 40.6 65.0 44.7 19.6 61.0 42.5 85.3 1293.8 290.0 – – 46.4 38.1 22.4 – 53.7 50.9
LLaVA Vicuna-13B 54.4 43.0 – 41.3 – – 38.9 – – – – – – – – – – 51.2
MiniGPT-4 Vicuna-13B 37.5 37.6 – 30.8 – – 19.4 – – – – – – – – – – 41.6
InstructBLIP Vicuna-7B – – – 49.2 34.5 60.5 50.1 – – – 36.0 23.7 53.4 60.9 26.2 56.7 – –
Qwen-VL Qwen-7B – – 78.8 59.3 35.2 67.1 63.8 – – – 38.2 7.4 56.3 – – 59.4 – –
Qwen-VL-Chat Qwen-7B – – 78.2 57.5 38.9 68.2 61.5 – 1487.5 360.7 60.6 56.7 58.2 – – – – –
LLaVA-1.5 Vicuna-1.5-7B – – 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 316.1 64.3 58.3 58.6 63.4 30.5 58.7 – –
LLaVA-1.5 Vicuna-1.5-13B – – 80.0 63.3 53.6 71.6 61.3 85.9 1531.3 295.4 67.7 63.6 61.6 70.7 35.4 62.1 – –
MiniGPT-v2 LLaMA-2-Chat-7B 56.9 47.7 – 60.3 30.3 – 51.9 – – – – – – – – – 58.2 60.6
MiniGPT-v2-Chat LLaMA-2-Chat-7B 55.9 49.4 – 58.8 42.4 – 52.3 – – – – – – – – – 59.5 63.3
VILA-7B LLaMA-2-7B – – 79.9 62.3 57.8 68.2 64.4 85.5 1533.0 – 68.9 61.7 61.1 69.7 34.9 – – –
VILA-13B LLaMA-2-13B – – 80.8 63.3 60.6 73.7 66.6 84.2 1570.1 – 70.3 64.3 62.8 73.0 38.8 – – –
StreamChat-7B Qwen-7B – – – 62.4 – 85.5 72.4 – 1520.0 – 74.4 – 74.3 – – – – –
StreamChat-14B Qwen-14B – – – 63.3 – 85.8 74.4 – 1617.0 – 79.0 – 75.5 – – – – –

types such as commonsense. MiniGPT-v2 and MiniGPT-
v2-chat perform best in this benchmark, showcasing their
outstanding reasoning abilities. IconVQA emphasizes the
importance of holistic cognitive reasoning in real-world
diagram-based word problems, requiring both perceptual
acumen and versatile cognitive reasoning. MiniGPT-v2
and MiniGPT-v2-chat also perform best, highlighting their
exceptional perception and cognitive reasoning capabili-
ties. VQAv2 is a more balanced VQA dataset. VILA-13B
performs best, demonstrating its resistance to language bi-
ases in the knowledge it acquires. GQA focuses on image
scene graphs, offering impartial compositional questions
derived from real-world images. Each question is asso-
ciated with a structured representation of its meaning and
the detailed logical steps required to answer it. StreamChat
performs best in this benchmark, illustrating their excellent
reasoning abilities.

These findings can inspire training recipes. Firstly,
higher image resolution can incorporate more visual details
for the model, benefiting tasks that require fine-grained de-
tails. For example, LLaVA-1.5 and VILA employ a resolu-
tion of 336×336, while Qwen-VL and MiniGPT-v2 utilize
448 × 448. Moreover, StreamChat and VILA reveal sev-
eral key findings: (1) A dense instruction dataset is crucial
to facilitate the training of MM-LLMs; (2) Re-blending
text-only instruction data (e.g., unnatural instruction [54])
with image-text data during SFT not only addresses the
degradation of text-only tasks but also enhances VL task
accuracy.

6 Future Directions
We can enhance the MM-LLMs’ strength from the fol-

lowing four key avenues: (1) Expanding Modalities: Cur-
rent MM-LLMs mainly support the following modalities:

image, video, audio, 3D, and text. However, the real world
involves a broader range of modalities. Extending MM-
LLMs to accommodate additional modalities (e.g., web
pages, heat maps, and figures&tables) will increase the
model’s versatility, making it more universally applicable;
(2) Diversifying LLMs: Incorporating various types and
sizes of LLMs provides practitioners with the flexibility
to select the most appropriate one based on their specific
requirements; (3) Improving MM IT Dataset Quality:
Current MM IT datasets have ample room for improvement
and expansion. Diversifying the range of instructions can
enhance the effectiveness of MM-LLMs in understanding
and executing user commands; (4) Strengthening MM
Generation Capabilities: Most current MM-LLMs are
predominantly oriented towards MM understanding. Al-
though some models have incorporated MM generation
capabilities, the quality of generated responses may be
constrained by the capacities of the LDMs. Exploring
the integration of retrieval-based approaches [55, 56, 57]
holds significant promise in complementing the generative
process, enhancing the overall performance of the model.

7 Conclusion
In this paper, we presented a survey of MM-LLMs fo-

cusing on recent advancements. Initially, we categorize
the model architecture into five components, providing a
detailed overview of general design formulations and train-
ing pipelines. Subsequently, we introduced various SOTA
MM-LLMs, shed light on their capabilities across diverse
MM benchmarks, and envision future developments in this
rapidly evolving field. Although MM-LLMs have made
many breakthroughs, there is still room for improvement.
We hope this survey can provide insights and contribute to
the ongoing advancements in the MM-LLMs domain.
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