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Abstract
Entity tracking is essential for complex reasoning. To per-
form in-context entity tracking, language models (LMs)
must bind an entity to its attribute (e.g., bind a container to
its content) to recall attribute for a given entity. For exam-
ple, given a context mentioning “The coffee is in Box Z,
the stone is in Box M, the map is in Box H”, to infer “Box
Z contains the coffee” from the context, LMs must bind
“Box Z” to “coffee”. To explain the binding behaviour of
LMs, Feng and Steinhardt (2023) introduce a Binding ID
mechanism and state that LMs use a abstract concept called
Binding ID (BI) to internally mark entity-attribute pairs.
However, they have not captured Ordering ID (OI), namely
ordering index of entity, from entity activations that directly
determines the binding behaviour. In this work, we pro-
vide a novel view of the BI mechanism by localizing OI and
proving the causality between OI and binding behaviour.
Specifically, we discover the OI subspace and reveal causal
effect of OI on binding that when editing activations along
the OI encoding direction, LMs tend to bind a given entity
to other attributes (e.g., “stone” for “Box Z”) accordingly.
The code and datasets used in this paper are available at
https://github.com/cl-tohoku/OI-Subspace.

1 Introduction
The ability of a model to track and maintain informa-

tion associated with an entity in a context is essential for
complex reasoning (1; 2; 3; 4; 5). To recall attribute infor-
mation for a given entity in a context, a model must bind
entities to their attributes (6). For example, given a Sample
1, a model must bind the entities (e.g., “Box Z”, “Box M”
and “Box H”) to their corresponding attributes (e.g., “cof-
fee”, “stone” and “map”) so as to recall (or answer) such
as what is in “Box Z”. Binding has also been studied as a
fundamental problem in Psychology (7).
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Figure 1: Our main finding on Ordering ID (OI) subspace
intervention. Patching entity (e.g., "Z") representations
along OI direction (i.e., PC1) in activation space yields
corresponding changes in model output.

To uncover how Language Models (LMs) realize binding
in term of internal representation, an existing research (6)
introduces the Binding ID mechanism that LMs apply an
abstract concept called Binding ID (BI) to bind and mark
Entity-Attribute (EA) pairs (e.g., “Box Z” and “coffee” in
Sample 1, where BI is denoted as a numbered square).
However, they have not captured the Ordering ID (OI)
information from the entity (or attribute) activations that
causally affects binding behaviour and thus BI informa-
tion as well. Here, OI is defined as the input order (or
ordering index) of entities and attributes, no matter they
are bound by a relation (e.g., “is_in” in Sample 1) or not,
such as the indexing number in Sample 1 and Sample 2.
We can observe that in a 1E-to-1A bound context, such as
in Sample 1, BI and OI are interchangeable.

(1) Context: The coffeeÜ

0 is in Box ZÜ

0 , the stoneÜ

1

is in Box MÜ

1 , the mapÜ

2 is in Box HÜ

2 .
Query: Box ZÜ

0 contains the

(2) Non-related Context: The coffeeÜ

0 and Box ZÜ

0

are scattered around, the stoneÜ

1 is here and Box
MÜ

1 is there, the mapÜ

2 and Box HÜ

2 are in differ-
ent place. Query: Box ZÜ

0 contains the
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Since binding is the foundational skill that underlies en-
tity tracking (6), in this work, we take the entity tracking
task (8; 9) as a benchmark to analyze the LM’s binding
behaviour. Based on the analysis of internal representa-
tion on this task, we localize the OI information from the
activiations and provide a novel view of the BI mecha-
nism. Specifically, we apply Principle Component Anal-
ysis (PCA) as well as other dimension reduction methods
such as Partial Least Squares to analyze the activations of
LMs, and which are empirically proven to be effective. We
discover that LMs encode (or store) the OI information
into a low-rank subspace (called OI subspace hereafter),
and the discovered OI subspace can causally affect binding
behaviour and thus BI information as well. That is, we find
that by causally intervening along the OI encoding Prin-
ciple Component (PC), LMs swap the binding and infer a
new attribute for a given entity accordingly. For example,
as shown in Figure 1, by patching activations along the
direction (i.e., PC1), we can make the LMs to infer “Box Z
contains the stone” and “Box Z contains the map” instead
of “Box Z contains the coffee”. Therefore, our findings
extend the previous BI based understanding of binding in
LMs (6) by revealing the causality between OI and binding.

In addition, we find that such OI subspace that deter-
mines binding is prevalent across multiple LM families
such as Llama2 (10) (and Llama3 (11)), Qwen1.5 (12)
and Pythia (13), and the code fine-tuned LM Float-7B (9).
Please see our paper (14) for more details.

2 Finding OI Subspace

In this section we describe our Principle Component
Analysis (PCA) based method to localize the OI subspace
in activations of LMs. As shown in Figure 1, given a LM
(e.g., Llama2), and a collection of texts which describes
a set of EA pairs related by a relation such as “is_in” in
Sample 1, we extract the activation of entity token (e.g.,
“Z”) in query (denoted as x𝑖) from a certain layer 1）. We
then construct a activation matrix 𝑀𝑟 P 𝑅𝑛ˆ𝑑 for a relation
𝑟, where 𝑛 denotes the number of entities and 𝑑 denotes
the dimension of the activation. The row 𝑖 of 𝑀𝑟 is the
activation of an entity token (i.e., x𝑖).

PCA has been applied for identifying various subspace
(or direction) such as the subspace encoding language
bias (15), truth value of assertions (16) and sentiment (17).

1） The layer is determined by a development set

BI_1 BI_2 BI_3 BI_4 BI_5 BI_6 BI_7

layer0 layer1 layer2 layer3
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layer8 layer9 layer10 layer11

layer12 layer13 layer14 layer15

layer16 layer17 layer18 layer19

layer20 layer21 layer22 layer23

layer24 layer25 layer26 layer27

layer28 layer29 layer30 layer31

Figure 2: Layer-wise OI subspace visualization on Llama2-
7B, where “BI” primarily denotes OI.

Inspired by these studies, we choose PCA as our first at-
tempt to localize OI subspace. Specifically, the PCA of a
activation matrix is 𝑀𝑟 “ 𝑈𝑟Σ𝑟𝑉

𝑇
𝑟 , where the columns of

𝑉𝑟 P 𝑅𝑑ˆ𝑑 are principle directions of 𝑀𝑟 . We takes first 𝑐
columns of 𝑉𝑟 as the OI direction, denoted as 𝐵𝑟 P 𝑅𝑑ˆ𝑐.

We adopt a subset of the entity tracking dataset (8; 9),
which contains 𝑛 “ 1000 samples, to create layer (𝑙) wise
activation matrix 𝑀 𝑙

𝑟 . We then use the 𝑀 𝑙
𝑟 to extract the

layer-wise OI subspace projection matrix 𝐵𝑙
𝑟 P 𝑅𝑑ˆ2 to

visualize the activations. Figure 2 shows the embedding
visualization on Llama2-7B, where each point represents
the activation of an entity projected via the 𝐵𝑙

𝑟 , and the
colors represent OIs. From which, we can observe that
middle layers, such as layer 8, have a clearly visible di-
rection along which OI increases, while the others have
tangled distribution.

We also observe similar pattern of distribution on
Llama3-8B, Float-7B and other LM families such as
Qwen1.5 and Pythia. This indicates that LMs use the
middle layers to encode OI information, and the finding is
prevalent across multiple LM families. This finding is also
consistent with the “stages of inference hypothesis” (18)
stating that the function of early layers is to perform deto-
kenization, middle layers do feature engineering, and late
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Answer for # Step

Context Query 1 2 3 4 5 6

The coffee is in Box Z, the stone is in Box M,
the map is in Box H, the coat is in Box L,
the string is in Box T, the watch is in Box E,
the meat is in Box F.

Box Z
contains
the

stone map map string watch meat

The letter is in Box Q, the boot is in Box C,
the fan is in Box N, the crown is in Box R,
the guitar is in Box E, the bag is in Box D,
the watch is in Box K.

Box Q
contains
the

boot fan crown guitar watch watch

The cross is in Box Z, the ice is in Box D,
the ring is in Box F, the plane is in Box Q,
the clock is in Box X, the paper is in Box I,
the engine is in Box K.

Box Z
contains
the

ice ring ring clock paper engine

Table 1: Attributes inferred by Llama2-7B as a result of di-
rected activation patching along OI-PC in the OI subspace
on the dataset of “r: is_in”, where color denotes the BI.

layers map the representations from the middle layers into
the output embedding space for next-token prediction. Ac-
cording to the hypothesis, we would expect to find the
ordering feature most prominently represented in middle
layers, which is exactly what the visualization shows. We
call this dimension that represents OI as OI Principle Com-
ponent (OI-PC). In the following section, we apply causal
intervention on the OI-PC to analyze how OI-PC affect the
model output.

3 Causal Interventions on OI-PC
In order to test if OIs are not only encoded in the OI

subspace, but that these representations can be steered so
as to swap the binding and change LM’s output, in this
section, we perform interventions to analyze the causality.
That is, we want to find out if making interventions along
OI-PC leads to a change in LM’s binding computation.

Activation Patching (AP) (19) has been recently pro-
posed to causally intervene computational graph of a LM
so as to interpret the function of a target computational
node (or edge). Different with the common AP setup, we
realize AP by directly editing activations along a particu-
lar direction (i.e., along OI-PC), similar to the activation
editing method of (20; 21; 22).

3.1 Setting

Dataset To explore the internal representation that en-
ables binding, we adopt the entity tracking dataset (8; 9).
The dataset consists of English sentence describing a set
of objects (here called attributes) located in a set of boxes
with difference labels (here called entities), and the task is
to infer what is contained by a given box. For instance,
when a LM is presented with “The coffee is in Box Z, the
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Figure 3: Logit Difference (LD) for OI-PC based interven-
tion across datasets on Llama2-7B, where x axis denotes
the number of intervention steps on 𝑒0, y axis does the LD,
BI_i represents each target attribute and the light yellow
bottom line indicates the LD of original attribute (i.e., 𝑎0).
Here, 𝑙 “ 8, 𝑣 “ 2.5, and 𝛼 “ 3.0.
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Figure 4: Logit flip for OI-PC based intervention across
datasets on Llama2-7B, where x axis denotes the number
of intervention steps on 𝑒0, y axis does the proportion of
each inferred attribute in model output.

stone is in Box M, the map is in Box H, ... Box Z contains
the”, the LM should infer the next token as “coffee”. Each
sample involves 7 EA pairs.

Metrics We apply two evaluation metrics: logit differ-
ence (23) and logit flip (24). The logit difference metric
calculates difference in logits of a target token between
original and intervened setting. The "logit flip" accuracy
metric represents the proportion of candidate tokens in
model output after a causal intervention.

3.2 Results: Direct Editing OI Subspace

We intervene via the Equation 1, where x0,𝑙 is the origi-
nal activation of 𝑒0 (i.e., the leftmost entity) in layer 𝑙, x˚

0,𝑙 is
the intervened activation, 𝐵𝑟 is the OI subspace projection
matrix mentioned in Section (§2), 𝛼 is a hyper-parameter to
scale the effect of intervention and 𝛽 (0 ď 𝛽 ď 6) denotes
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the number of steps.

x˚
0,𝑙 “ x0,𝑙 ` 𝛼𝐵𝑇

𝑟 p𝐵𝑟x0,𝑙 ` 𝛽𝑣q (1)

Table 1 lists several examples under the OI subspace
intervention on the entity tracking dataset (8; 9). We can
see that when adding 1 step along OI-PC, the model se-
lects “stone” for entity “Z” instead of its original attribute
“coffee”. Similarly, when the step is doubled, the model
will select attribute “map” for the entity, and so on. This
indicates that changing the value along OI-PC can induce
the swap of attribute.

Besides the qualitative analysis, we also conduct quan-
titative analysis for the causality between the OI subspace
based AP and the binding behaviour of LMs. We plot
mean-aggregated effect of the OI-PC based AP in Figure 3.
Figure 3 indicates how the Logit Difference (LD) of each
attribute changes as the step increases. We can observe
that as the number of steps increases, LD of the origi-
nal attribute decreases. In contrast, LD of other attributes
gradually increase until a certain point and then gradually
decrease. Given a candidate attribute, its LD peak roughly
corresponds to the number of steps that is equal to its BI.
For instance, when adding 3 steps, the points of BI_3 (i.e.,
attributes of BI“ 3) achieve the highest LD score. This
indicates that by adjusting the value along the OI-PC, we
can adjust BI information and thus increase the logit score
of the corresponding attribute.

Similarly, Figure 4 illustrates the relation between the
number of steps and the logit flip, which gauges the per-
centage of the predicted attributes under an intervention.
Figure 4 shows that as the step increases, the proportion
bar becomes darker, it means that the model promotes the
proportion of the corresponding attribute in its inference.
For instance, when adding 3 step on the subspace, the 𝑎3

(i.e., BI_3) becomes the major of the answers. This proves
that the OI-PC based interventions can causally affect BI
information as well as the computation of Binding in a LM.

OI Subspace and Other Information: the indepen-
dence of OI subspace from positional information (i.e.,
𝑝𝑜𝑠𝑡𝑖𝑜𝑛_𝑖𝑑𝑠) is studied in Appendix (§A.1), and its rela-
tionship with the existence of a binding relation (e.g., “is
in”) is analyzed in Appendix (§A.2).

Figure 5: PLS components and R2 score

Input (1-to-1)

“A0 is in E0, A1 is in E1, A2 is in E2, A3 is in E3,
A4 is in E4, A5 is in E5, A6 is in E6.”

Input (n-to-1)

“A0 is in E0, A1 is in E1, A2 is in E0, A3 is in E2,
A4 is in E3, A5 is in E0, A6 is in E4.”

Table 2: A n-to-1 sample where entity “E0” has 3 attributes

3.3 OI Subspace for n-to-1 Setting

Section (§2) reveals that LMs encode OI into OI-PC
under 1-to-1 setting, that is, one entity only has one at-
tribute. In this session, we analyze how a LM encodes OI
under n-to-1 setting, where one entity possesses multiple
attributes. To do so, we create an alternative dataset as
shown in Table 2, and analyze it via Partial Least Squares
(PLS) (25). PLS aims to learn low-dimensional represen-
tation of the activation of an entity (e.g., E0) that keeps (or
predicts) the OIs of its corresponding multiple attributes
(e.g., OI“ 0, OI“ 2 and OI“ 5). Figure 5 (left) shows
that compared to 1-to-1, in the n-to-1 setting, the LM has
a high R2 score when PLS components are more than 20,
indicating that a LM encodes OI via relatively high-rank
subspace while dealing with multiple attributes. In addi-
tion, Figure 5 (right) shows the R2 score for each attribute,
indicating that the encoding capacity of OI varies with the
order of each bound attribute in the n-to-1 setting.

4 Conclusion and Future Work
In this work, we study the in-context binding, a fun-

damental skill underlying many complex reasoning and
natural language understanding tasks. We provide a novel
view of the Binding ID mechanism (6) that there exists a
subspace in the activation of LMs that primarily encodes
the ordering information and which is used as the proto-
type of BIs to causally determine binding. Our future work
includes: 1. the analysis of OI subspace in a more realistic
setting; 2. OI subspace based mechanistic analysis.
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A Appendix

A.1 OI Subspace and Position

To prove the independence between OI subspace and Po-
sitional Information (PI), which is namely the 𝑝𝑜𝑠𝑡𝑖𝑜𝑛_𝑖𝑑𝑠
of input tokens, we create the following alternative dataset.
The dataset is created by adding Filler Words (FW) with
various length, such as “OK”, “I see that” and “There
is no particular reason”, in front of the entity tracking
dataset (8; 9), as shown in Table 3. Since the length (i.e.,

PC1 PC2 PC3

−0.2
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0.4

0.6

0.8

1 OI
PI

C
or
re
la
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n

Figure 6: Spearman’s rank correlation between OI-PC and
PI (or OI), where “PC𝑖” denotes the 𝑖-th PC of the OI
subspace and “PI” is the length of FW.

the number of tokens) of FW directly changes the PI of
its following entities and attributes without affecting their
OIs, we take the length as the measure of intervention on
PI and apply Spearman’s rank correlation 𝜌 to calculate
the correlation between the length (denoted as PI) and the
OI-PC value. Figure 6 shows 𝜌 between PI and OI-PC as
well as between OI and OI-PC. We can observe that OI-PC
has high 𝜌 with OI but almost zero 𝜌 with PI, indicating
that the discovered OI-PC is highly correlated with OI in-
formation but independent with PI. Therefore, the OI-PC
does not simply encode absolute token position.

Input (original)

“The apple is in Box E, the bell is in Box F, ...”

Input (with filler words)

“I will find out that the apple is in Box E, the bell is
in Box F, ...“

Table 3: An example of the dataset with filler words “I will
find out that”.

Input (original)

“The apple is in Box E, the bell is in Box F, ...”

Input (Non-related)

“I see apple, somewhere else there is Box E,
the bell and Box F are scattered around, ...”

Table 4: An example of the dataset with non-related ex-
pression.

PC1 PC2 PC3
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C
or
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Figure 7: OI-PC based correlation between attributes and
their corresponding entities, where “PC𝑖” denotes the 𝑖-
th PC of the OI subspace, “Yes” and “No” represent the
related (i.e., original) and non-related dataset respectively.

A.2 OI Subspace and Relatedness

In order to uncover the relationship between OI-PC and
the relatedness, which namely means the existence of a
binding relation, we create an alternative dataset by con-
verting relational expression into non-related one, as shown
in Table 4. We can observe that non-related expression
could make a target EA pair (e.g., “Box E’’ and “ap-
ple”) semantically unrelated but retain their OI (e.g., the
OI of “apple’’ and “bell” are still 0 and 1 respectively).
We select Spearman’s rank correlation 𝜌 as the correlation
metric and compare the 𝜌 of the non-related dataset with
the related one in the Figure 7.

We can observe that 𝜌 of non-related dataset is slightly
lower than the related (i.e., original) one, indicating that
the OI-PC might contain limited relational information so
that removing it can marginally decrease the 𝜌. However,
there is still strong correlation between the non-related (or
non-bound) entity attribute pair, indicating that the OI-PC
primarily encodes the OI information but not the related-
ness.
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