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Abstract
In-context Learning (ICL) is a promising few-shot learn-

ing paradigm with unclear mechanisms. Existing explana-
tions heavily rely on Induction Heads, which fail to account
for out-of-domain ICL, where query labels are absent in
demonstrations. To address this, we model ICL as attribute
resolution, where queries are mixtures of some attributes,
and ICL identifies and resolves relevant attributes for pre-
dictions. In this paper, we propose a mechanistic prototype
using toy models trained on synthetic data, and observe:
(1) even 1-layer Transformers achieve non-trivial accuracy,
with limited benefit from additional demonstrations, (2)
scaling models effectively improve accuracy, and (3) in-
ference operations can be decomposed into label space
identification and generalized induction, warranting fur-
ther exploration.

1 Introduction
In-Context Learning (ICL) [1, 2] is an emerging few-

shot learning paradigm: given an input sequence formed
like [𝑥1, 𝑦1, . . . , 𝑥𝑘 , 𝑦𝑘 , 𝑥𝑞], where 𝑥𝑖s are demonstrations,
𝑦𝑖s are label token corresponding to its preceding 𝑥𝑖 , and
𝑥𝑞 is a query, Language Models (LMs) predict a label for
the 𝑥𝑞 by causal language modeling operation, with only
parameters pre-trained on wild language dataset. ICL has
aroused widespread interest with an unclear mechanism.

Current works on the mechanisms of ICL are largely
related to circuit studies based on Induction Heads [3, 4, 5,
6, 7]. As shown in Fig. 1 (left, A), these studies propose
that Transformers explicitly retrieve demonstration features
similar to the query from the context through specialized
attention behaviors, subsequently copying these features
into the output of the attention layer. While such studies
have advanced significantly, they face a critical limitation:
when features that can be explicitly retrieved are absent

from the context, specifically when the ground-truth label
for the query does not appear in the context, this induc-
tion head-based methodology loses its explanatory power:
in such a scenario (named Out-Of-Domain, OOD), induc-
tion head-based explanation predicts an ICL accuracy of 0,
which is obviously not the case.

To address the aforementioned OOD issue, we consider
the following: in scenarios where similarity-based retrieval
fails, it becomes essential for LMs to resolve the query into
its required attributes specified by the contextual demon-
strations, rather than merely retrieving a similar demon-
stration and copying its label to produce a correct answer.
As shown in Fig. 1 (left, B) for an example, the LM catches
the specified attribute “Occupation” and resolves the query
on such an attribute. A good beginning in such a direction
is task vectors [8] in ICL scenario, but more discussion is
still beneficial to reveal the detailed operating dynamics.

Therefore, in this paper, we investigate the capacity and
operational dynamics of Transformers on the “query res-
olution” operations. Specifically, we simulate a scenario
where multiple attributes of input texts are encoded into
feature vectors (as shown in [3, 9]) and resolved into pre-
diction using contextual information. To achieve this, we
train toy Transformers on synthetic data as a mechanistic
prototype, where: the input feature 𝑥𝑖 is represented as a
mixture of Attribute vectors, with each attribute vector
sampled from a Gaussian mixture comprising several clus-
ters, and each cluster corresponds to an Attribute Value.
A Task is then defined as querying the attribute value of
a specific attribute. Using this setup, we train toy Trans-
formers to derive preliminary prototypical observations.

Our experiments and subsequent analysis find that: (1)
Even a 1-layer Transformer produces a non-trivial result,
(2) scaling models effectively improves accuracy, (3) in-
ference operations can be decomposed into label space
identification and generalized induction.
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Figure 1 Left: (A) An induction-style explanation of ICL processing. LMs first search the same demonstration as the query “Geoffrey
Hinton” and copy the subsequent label to the output of the query. When the label “Researcher” is not presented in the context, ICL
can not work in this style. (B) A resolve-style explanation of ICL processing investigated in this paper. LMs first identify the attribute
(“Occupation”) specified by the demonstrations, and resolve the query into this attribute. Middle: A diagrammatic sketch of the data
synthesis. Each train/test data is an ICL-formed sequence with input feature 𝑥𝑖s and labels 𝑦𝑖s. Each 𝑥𝑖 is a mixture of several attributes,
and 𝑦𝑖 specifies the attribute to be resolved. Right: Model structure used in this paper.

2 Experiment Settings
As mentioned before, we train toy Transformers on syn-

thetic data. Now, we introduce the experiment details.

2.1 Data Synthesis

Our experiments are conducted on synthetic sequence
data formed like [𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑘 , 𝑦𝑘 , 𝑥𝑞], with single
time-step vectors synthesized following these rules:

Input feature and query 𝑥𝑖 . Each 𝑥𝑖 is a 𝑑-dimentional
mixture of 𝐴 attribute vectors, and each attribute vector
𝑎 𝑗 is sampled from a Gaussian mixture with 𝐶 clusters
in a 𝑑𝑎 dimensional space defined by an orthonormal up-
projection metrix 𝑈 𝑗 ∈ ℝ𝑑×𝑑𝑎 :

𝑥𝑖 =
𝐴∑
𝑖=0

𝑈 𝑗𝑎 𝑗 , 𝑎 𝑗 ∼
1
𝐶

𝐶∑
𝑘=0

N
(
𝝁𝑘 ,𝚺𝑘

)
, (1)

where: any two 𝑈 𝑗s are orthogonal (which requires
𝐴𝑑𝑎 ⩽ 𝑑), each centroid 𝝁𝑘 is sampled in a 𝑑𝑎-dimensional
Gaussian distribution with mean of 0 and covarience of 3I,
and the sampling covarience 𝚺𝑘 is fixed to 0.1I.

Task 𝑇𝑗 . Intuitively, given a sampled vector 𝑥𝑖 from the
afore-defined process, for each attribute 𝑎 𝑗 that constitutes
it, we can determine the maximum likelihood Gaussian
cluster index 𝑚 𝑗 (called Attribute Value of attribute 𝑎 𝑗 ).
Repeat this process for every 𝑎 𝑗 , we can sequentially pro-
ducing a vector [𝑚1, 𝑚2, . . . , 𝑚𝐴] composed of 𝐴 indices.
A task 𝑇𝑗 is defined as an inquiry on the 𝑥𝑖 to output the
𝑗-th attribute’s attribute value 𝑚 𝑗 , that is, 𝑇𝑗 (𝑥𝑖) = 𝑚 𝑗 .
For a vector composed of 𝐴 attributes, we can define 𝐴

tasks, each corresponding to a specific attribute, collec-
tively forming a task family T𝐴.

Label vector 𝑦𝑖 . We define the label verbalization as
a discrete representation of 𝑇𝑗 (𝑥𝑖) as follows: (1) For
each of the 𝐶 possible attribute value (denoted as 𝑚 𝑗 ∈
{1, 2, . . . , 𝐶}) of a task 𝑇𝑗 , we generate an index as the
label verbalization𝑉𝑇𝑗

(
𝑚 𝑗

)
to represent it, which span a𝐶-

dimensional label space. (2) To prevent shortcut learning
(discussed further below), we divide the task family into
⌈𝐴/𝐵⌉ groups, each consisting of up to 𝐵 tasks. Within
each group, all tasks share the same label space. For
example, if 𝐴 = 4 and 𝐵 = 2, the tasks can be divided
into 2 groups: {𝑇1, 𝑇2}, and {𝑇3, 𝑇4}, then, if given the
𝑇1 (𝑥) = 𝑇2 (𝑥), we have 𝑉𝑇1 (𝑇1 (𝑥)) = 𝑉𝑇2 (𝑇2 (𝑥)). So, for
a task family of 𝐴 tasks, we can have a total label space 𝕐

of size ⌈𝐴/𝐵⌉𝐶. Then, for each label 𝑙 in 𝕐 , we sample a
vector from 𝑑-dimensional normal distribution as the Label
Vector 𝑦𝑖 = 𝑌 (𝑙) as the dense representation of the label.

Input sequence. To build one input sequence,
we randomly1） sample (𝑘 + 1) input features as
{𝑥1, 𝑥2, . . . , 𝑥𝑘 , 𝑥𝑞}, and a task 𝑇𝑗 . As shown in Fig. 1
(Middle) for a 𝐵 = 2 scenario, for each input feature, we
build label vectors 𝑦𝑖 = 𝑌

(
𝑉𝑇𝑗 (𝑥𝑖)

)
, and combine them

with formation [𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑘 , 𝑦𝑘 , 𝑥𝑞] as an input
sequence (where 𝑥1:𝑘s are the demonstrations, and 𝑥𝑞 is
the query), and 𝑉𝑇𝑗

(
𝑥𝑞

)
as the expected label. We train

Transformer models (§2.2) on such input-label pairs.
Default parameters. Unless specified, we use 𝑘 = 4,

𝐴 = 16, 𝐵 = 4, 𝐶 = 16, so that a label space of size
|𝕐 | = 64; and 𝑑 = 256, 𝑑𝑎 = 16. We use standard unit
vectors to span the up-projection 𝑈 𝑗s.

1） Notice we do not force an OOD condition since it can lead models
to learn to only output labels absent from the context.
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2.2 Model and Training

Model. Unless specified, we use 1-layer Transformer-
formed attention with 1 head (Fig. 1 (Right)). A 32-
dimensional one-hot position embedding is concatenated
to the input, so the final dimensionality 𝑑𝑚 is 288. In some
experiments, we increase the number of attention heads,
but they always divide the 288 dimensions equally without
additional parameters.

Training. We generate a total of 𝑛 = 819200 input
data instances by the aforementioned pipeline. We use a
standard SGD optimizer, with a learning rate 0.01 and batch
size 128 to conduct full-precision training. No learning rate
decay, regularization, or momentum are used. Validation
data is sampled under the same distribution as training data.

3 Results
One layer Transformer resolves query to the spec-

ified attribute. We plot the validation accuracy along
the training processing as shown in Fig. 2, where non-
trivial accuracy can be observed in 1-layer Transformers.
In detail, compared to the random baselines and ablation
experiments, where (1) demonstrations are ablated (𝑘 = 0)
to block the model from identifying the task information;
(2) input features and queries are ablated (𝑥 = 0) to block
the model from resolving the inputs: when the demonstra-
tions specify the 𝑥 ↦→ 𝑦 correlation (Standard 𝑘 = 4), the
model predicts the label relatively accurate. Moreover, as
shown in Fig. 3, increasing the number of demonstrations
does not significantly improve accuracy. Such a sign gives
a conclusion, as even one demonstration nearly specifies
the attribute to be resolved, with additional demonstrations
only marginally reducing minor ambiguities.

Capacities of various model scales. In Fig. 2, we ob-
served a non-trivial accuracy while not ideal, therefore, we
are curious about whether a larger or more complex model
can act better, so we repeat the experiments on 2-layer and
8-head settings with more training epochs. The orthogonal
experiment results are shown in Fig. 4, where the 2-layer 8-
head result significantly outperforms with an obvious phase
transition (discussed later), and the remaining results are
almost equal, which suggests that: (1) 2-layer Transformer
may conduct different inference operations, (2) multi-head
attention is an essential component for ICL.

Operations of attribute resolution. Then, we attempt
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Figure 2 The training dynamics of the standard experi-
ments and some reference experiments: (1) Standard 𝑘 = 0:
trained/tested on sequence without demonstrations. (2) 𝑥 fixed
to 0 vectors: trained/tested on sequence where 𝑥𝑖s are fixed to
0. (3) Random w/ label space: Random prediction inside the
label space, i.e., 1/16. (4) Random w/o label space: Random
prediction inside the label space, i.e., 1/64.
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Figure 3 The training dynamics with various 𝑘 .
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Figure 4 The training dynamics on 4 model specifications.

to investigate the mechanism for the attribute resolution,
and preliminarily observe 2 key operations. (1) Label
space indentification. As a necessary condition for an ac-
curate inference, the model should identify the candidate
labels w.r.t. the given context. Shown in Fig. 5 for some
cases, when the labels are given in context, even if the
information of 𝑥 is absent, the model can correctly iden-
tify the label space to be outputted. Moreover, as a closer
observation, we conduct principal component analysis on
line vectors of the output dense layer (see Fig. 1, each line
vector corresponds to an output un-embedding) as shown
in Fig. 6, clear clusters are observed within the same label
group (notice that we have 4 16-label groups), suggest-
ing that the model learns the label space information in
the training processing, which is aligned with previous
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Figure 5 Output logits visualized on 3 settings aligned with
Fig. 2, each for a input case. The model can utilize the contextual
label information to identify the correct output label space (1,
3), and while no label information is given, the model can not
significantly identify the label space (2).

work [10]. (2) Generalized induction. We visualize the
attention behavior of (A) the end checkpoint of the default
model and (B) two checkpoints before and after the phase
transition of the 2-layer and 8-head model, as shown in
Fig. 7, where: in the 1-layer model and the 2-layer model
before the phase transition, the information flow from the
𝑥𝑖s to the query dominates, and after the phase transition
of the 2-layer model, the information flow from a 𝑦𝑖 to
the query dominates. This clearly indicates two differ-
ent mechanisms, and the one that focuses on label 𝑦 can
achieve better accuracy. Since no ground-truth labels are
presented in the context in this case, we believe that such
an induction-like operation is an essentially novel, or gen-
eralized induction, which is worthy of further exploration.

Novel attributes cannot be resolved. To simulate sce-
narios where the tasks specified by the demonstrations are
unseen during training, we resample 𝝁𝑘 to generate novel
validation samples. As shown in Fig. 8, the model achieves
near-random accuracy on these novel samples, which is
expected given the difficulty of responding to unknown at-
tributes. This highlights the In-weight Learning [5, 6, 11]
characteristic of OOD ICL.

4 Discussion
Summary. This paper introduces the attribute-resolving

explanation of ICL with prototypical observations.
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Figure 6 Output embeddings visualized.

Figure 7 Attention scores from the last token (as the attention
query) on an OOD input case, label tokens are in blue.
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Figure 8 The training dynamics evaluated on distribu-
tion-shifted data.

Clues for future works. Future research should look
closer at the proposed mechanism in real-world lan-
guage models and explore connections with other theo-
retical prototypes for OOD ICL, such as in-context regres-
sion [12, 13]. Additionally, it would be valuable to investi-
gate how more complex structures in actual language mod-
els, such as FFN blocks within standard Transformer layers,
contribute to or interfere with the proposed operations. By
laying a foundation, this paper opens up possibilities for
such exciting and impactful research.
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