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Abstract
Counter-Argument Logical Structure Analysis

(CALSA) is a task that analyzes logic patterns of a
counter-argument in relation to an initial argument. It
holds substantial educational value, as informative feed-
back for improving counter-arguments can be provided
based on the analyzed logic pattern. However, due to
the complex nature of the task, the implicit reasoning
skills required to identify these underlying logic patterns
present significant challenges for current LLMs. To
address this, we explore decomposing the logic patterns
into fine-grained logic components and tackling them
individually. Our experimental results demonstrate
improvements compared to identifying coarse-grained
logic patterns. More importantly, we find that whether
predicted logic patterns can be considered plausible
deeply depends on the degree of implicitness involved in
interpreting an argument.

1 Introduction
CALSA is a task for analyzing the logic patterns of

counter-arguments (CA) in relation to initial-arguments
(IA) [1] in the setting of debates. Figure 1(a) shows an
example of a logic pattern annotated on top of a CA from
CALSA. The task is beneficial as capturing the underly-
ing logic patterns of CAs can be potentially leveraged for
providing constructive feedback to a learner’s CA, which
would help foster their critical thinking skills.

Previous work on CALSA has only explored a simple
end-to-end approach where they utilize Large Language
Models (LLMs) to directly generate the logic patterns of a

given CA [1]. (Figure 1(b)) They conclude that the task is
challenging for current LLMs due to the implicit reasoning
abilities required to identify the underlying logic patterns.
Furthermore, while they claim that multiple logic patterns
may exist due to multiple possible interpretations of a CA,
they did not collect an exhaustive list of logic patterns for
CAs, which hinders the reliability of evaluating LLMs’
abilities in solving the task.

Divide and conquer is a common strategy of decom-
posing a challenging task into simpler subtasks, which has
been widely applied in computer science [2, 3]. In the field
of NLP, many works have exhibited the effectiveness of
problem decomposition for various tasks [4, 5, 6, 7, 8, 9,
10, 11]. Upon further investigation on the logic patterns
proposed in the CALSA task, we found that most logic
patterns can be considered as consisting of multiple finer
logic components, such as causal relations (i.e., Promote(X,
Y)/Suppress(X, Y)) defined in the previous work [12, 13].
Therefore, it begs the question: If the implicit reasoning
required to identify a combination of logic components all
at once causes LLMs to struggle with the task, would iden-
tifying each logic component one by one (i.e., divide and
conquer) reduce the complexity of the implicit reasoning
and consequently make the overall task easier?

To answer the question, in this work, we explore evalu-
ating LLMs on identifying each logic component individ-
ually. Given that the CALSA dataset does not provide an
exhaustive list of logic patterns, we do not have a com-
plete set of labels for all logic components for a given
CA. Therefore, we first conduct an annotation study for
collecting labels for all the logic components for a given
CA. We consider identifying each logic component as a
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Initial Argument (IA) Counter Argument (CA)

Death penalty (DP) should be abolished 
because death penalty promotes 
executioners’ suffering (ES)

The way death penalty is set up, where multiple executioners 
press the button all at once, makes sure that individual 
executioner doesn’t suffer, instead, executioners’ suffering 
comes from their own emotions that they feel like they killed 
someone by themselves.

IA : 
P: ( DP ) PROMOTE ( ES )x y

C: ( DP ) SHOULD BE ABOLISHED
x

CA :  ( ...emotions ) PROMOTE ( ES )
z y

ATTACK

Another True Cause (ATC): 

(a) CALSA Task (Naito+ 2024)

Template set

(b) Simple end2end approach explored in Naito et al,2024. 

(c) Identifying logic component one by one explored in this work

Input

Death penalty should 
be abolished 
because……

IA

The way death penalty 
is set up, where ….

CA

Template set

LLM

Output

C: ( x  ) SHOULD BE ABOLISHED
P: ( x  ) PROMOTE ( y  )

Template ATC

their own emotions 
that……

Slotfiller

( z  ) PROMOTE ( y  )

IA : 
C: ( x ) SHOULD BE ABOLISHED

CA :          ( z ) PROMOTE ( y )
ATTACK

Another True Cause (ATC): 

P: ( x ) PROMOTE ( y )
Decompose into 
logic components

Logic component:  Not Pro(X, Y)

( x ) PROMOTE ( y )

Logic component:  Pro(Z, Y)

         ( z ) PROMOTE ( y )

Convert to binary 
questions

Logic component:  Not Pro(X, Y)

Does the CA argue that X does 
not promote Y?

Logic component:  Pro(Z, Y)

Does the CA argue that something 
besides X promotes Y?

1) Does the CA argue that X does not 
promote Y?
2) Does the CA argue that something 
besides X promotes Y?

1) Yes
2) Yes

Death penalty should 
be abolished 
because……

The way death penalty 
is set up, where ….

IA CA
Questions

(c’) Utilize the binary questions for annotating logic components and prompting the model

Input

LLM
1) Yes, the reason is that ……
2) Yes, the reason is that…….

1) Yes
2) No

Figure 1 (a): The overview of CALSA task. The task is composed of two parts: 1) selecting a logic pattern template from a
predefined template set and 2) extracting slotfillers from the CA that fill into the placeholders (Z) in the template. ATC refers to the
original label for a logic pattern proposed in the CALSA paper. (b): The input/output structure of the simple end2end approach explore
in the original CALSA paper. The input contains an IA passage, a CA passage, and a list of all proposed CA logic pattern templates
described in natural language, while the output contains the identifiers of the corresponding logic pattern templates and the slotfillers
that fill into the placeholder of the templates. (c): An example showing how we decompose a logic pattern into its constituent logic
components, and the binary question created for each component. (c’): An example showing how the binary questions associated with
logic components are utilized for annotations and prompting LLMs.

Question-Answering (QA) task where we create a binary
question asking for the existence of a corresponding logic
component for a given CA for both annotation study and
modeling experiments (Figure 1(c) and Figure 1(c’)). It is
worth noting that an exhaustive list of logic patterns can be
obtained by aggregating the labels for logic components,
which can be subsequently utilized for comprehensively
evaluating LLMs’ performance at a logic pattern level.

As a result, we collect 250 annotations for different logic
components. Our key insight from the annotation study is
that: It is possible to consider that a CA contains and does
not contain a given logic component simultaneously, de-
pending on the degree of implicit reasoning involved in
the annotators’ decision process. Furthermore, the model-
ing experiments using the collected annotations show that:
The LLM is able to conduct implicit reasoning required
to identify each logic component individually to some ex-

tent , and the overall performance also improved compared
to identifying logic patterns directly. However, LLM’s
reasoning process may or may not align with human anno-
tators, depending on the degree of implicit reasoning being
considered.

Overall, we claim that the real challenge of CALSA task
lies in how to determine the desirable degree of implicit
reasoning to be considered when identifying a logic com-
ponent, and how to align model’s reasoning process with
the desirable implicit reasoning. We provide further details
and discussion in the subsequent sections.
2 Constituent logic components for
CA logic patterns
We observe that the CA logic patterns proposed in the

original CALSA paper can be considered as composed of
multiple finer logic components. Most of the logic com-
ponents are related to the causal relations between two
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They said that executers’ stress is extremely overwhelming.
However, the point that Executers’ stress is extremely overwhelming is there because he 
thinks that even though executing the death penalty is his duty that he is authorized to but 
he feels that he feels like he murdered someone, which must be pricking his inner mind.
But he should not think or feel guilty about it.
Instead he must think that he has killed a person who is doing harm to the society and 
must think that he is protecting the society and the next generation from such person.
And sentencing him to death make wrong doers think twice before they do the crimes.

Death penalty should be abolished because death penalty promotes executioners’ suffering.

Initial Argument (IA)

Counter Argument (CA)

Question: 
Does CA argue that something besides 'death penalty' promotes 'executioner's suffering'?

Yes, “feels that he feels like 
he murdered someone” 
promotes “executioners’ 
suffering”

No, “feels that he feels like 
he murdered someone” is 
“executioners’ suffering” itself. 
They are the same thing!

Annotator1

Annotator2

Figure 2 An example of annotation for Sup(Z, Y) where both annotators’ interpretations are plausible.

concepts (i.e., Promote(X, Y) or Suppress(X, Y)), defined
in previous work [12, 13]. Other types of logic components
are fairly self-explanatory. For instance, one of the orig-
inal logic patterns named Mitigation is defined as While
CA acknowledges IA’s logic, it argues that the causal re-
lationship stated in the IA can be mitigated by something
Z. It is obvious that this logic pattern can be considered as
a combination of two logic components: Acknowledge(IA)
and Mitigation(IA, Z). We show the mapping between logic
patterns and logic components in Table 3.

3 Annotation Study

3.1 CALSA Dataset

We utilize Naito et al. [1]’s CALSA dataset where each
CA is annotated with underlying logic patterns in relation
to an IA. The dataset was annotated by crowdworkers,
where workers were only able to select one pattern per
sentence for a given CA. The results were aggregated to
allow one pattern per sentence, and a follow-up annotation
by one expert indicated that multiple patterns could be
considered per one sentence. Although multiple patterns
were considered, they were not exhaustively annotated as
a result of the follow-up annotation.

3.2 Annotating Logic Components

We consider the identification of a logic component as a
QA task. Each logic component is associated with a binary
question, e.g., Sup(Z, Y)→”Does CA argue that something
suppresses Y?”, Y is filled with a concept depending on
IA’s logic (e.g., misjudgment), while Z is supposed to be
extracted from the given CA. A list of binary questions
associated with all logic components is shown in Table 4.

As a start, we select 25 IA and CA pairs spanned across
3 varying topics from the CALSA devset for annotation.
Two authors of this paper (expert annotators) annotate the
binary questions associated with 10 Logic Components for
all 25 CAs (in total 250 annotations per annotator).

3.3 Annotation Results and Analysis

We calculate the Cohen’s Kappa for 250 binary labels.
We achieve a score of 0.49, indicating moderate agree-
ment between the annotators. The observed agreement is
189/250 annotations. In order to better understand the dis-
agreements, both annotators had a discussion and provided
reasoning for each of their disagreed annotations.

Analyzing disagreements, for 17 instances, either one
annotator agreed to the other’s choice after discussing and
considering the reasoning provided by the other annotator.
However, we discover that for 44 disagreements, both
annotators’ reasoning can be considered plausible de-
pending on how implicit we interpret the target CA.
Moreover, the degree of implicit interpretation depends on
the annotator’s background knowledge. Figure 2 shows an
example of a disagreeing instance in which both annota-
tors’ interpretations are plausible. The key disagreement
lies in whether to consider Z and Y as the same concept,
and whether to think so depends on how much implicit
knowledge utilized to interpret the CA’s target expression.

We aggregate the labels for all logic components to ob-
tain an exhaustive list of labels for logic patterns for each
CA. A logic pattern is labeled only if the answers to the
binary questions associated with all its constituent logic
components are ”Yes”. For CAs where both annotators’
interpretations are plausible, we consider both annotators’
labeling correct and consider the union of their annota-
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Table 1 Precision (P), Recall (R), F1 scores of logic pattern
identification. G4o-mini: GPT-40-mini

Baseline Decomp
Model P R F1 P R F1
G4o-mini .50 .29 .35 .52 .51 .50

tions as the final set of labels for those CAs. As a result, on
average, each CA ends up with 3.2 labeled logic patterns.

4 Model Experiment
To evaluate the efficacy of the identifying logic compo-

nent one by one, we conduct experiments around GPT-4o-
mini with the collected 250 instances. Given the compa-
rably small size of our collected dataset, we only consider
zero-shot setting as a start in this paper. We compare
the results of identifying logic components one by one and
then aggregate (Decomp) with that of prompting the model
to identify all logic patterns at once (Baseline). To avoid
brittle hand-crafted prompts for Baseline setting, we utilize
DSPy [14] to programmatically perform chain-of-thought
prompting, where we set the output signature to be a list of
identified logic patterns and their corresponding slotfillers.
For Decomp setting, we simply prompt the model to an-
swer the given binary question as shown in Figure 1(c’)
without using DSPy as the objective is fairly simple.

4.1 Results

Given that both annotators’ interpretations are plausible
for a comparably large portion of instances, we divide the
model results (for logic component identification) into two
parts for further evaluation and analysis. For the portion
where both annotators finally agree with each other (agree
portion, 206 instances), one annotator manually checked
the results, including the model’s answer to the question
and the reasoning, for 83 instances where the model’s gen-
erated answer to the binary question is not consistent with
the annotators’. For the portion where both annotators
reasoning can be considered plausible (plausible portion),
one annotator manually checked the results for all 44 in-
stances. The accuracy of logic component identification
is shown in Table 2. The results of logic pattern iden-
tification are obtained by aggregating the results of logic
component identification (i.e., a logic pattern is identified
only if all of its constituent logic components are success-
fully identified). We show that Decomp is more effective

than Baseline in Table 1.

4.2 Analysis

For agree portion, we found that for 18/83 instances,
model’s generated reasoning is plausible despite its answer
being different than the labels, and that whether the reason-
ing can be considered as correct depends on how implicit
we interpret the CA. Furthermore, for plausible portion,
for 43/44 instances, model’s generated reasoning aligns
with either one of the annotators’ reasoning. In total, apart
from the 123 instances where the model’s answer agrees
with both annotators’, model’s predictions for 61/127 in-
stances can be considered plausible depending on the
way we interpret the CA as well as the degree of implicit
knowledge we incorporate into the decision process.

5 Discussion
The plausible reasoning problem found in both anno-

tation phase (Section 3.3) and model experiment phase
(Section 4.2) poses a huge challenge for CALSA task re-
garding both obtaining a reliable dataset and subsequently
training/evaluating the computational models. It is an ex-
tremely difficult problem as it is almost impossible to de-
terministically define the degree of implicitness required
to interpret an argument. We argue that one potential way
to alleviate the problem could be to hire a large number of
people for annotations, similarly to [15], and subsequently
consider the majority answer as the final answer. How-
ever, given the complexity of the CALSA task, this option
would be time-consuming, require sophisticated training
for annotators, and be financially costly. Therefore, how to
effectively address the plausible reasoning problem could
be a challenging yet interesting future work.

6 Conclusion
In this work, we explore addressing the CALSA task

by decomposing the logic patterns into their constituent
logic components and identifying each component one by
one. We collect 250 annotations for logic components and
use them for subsequent model experiments. Our findings
in both annotation phase and modeling phase reveal that
it is the various degrees of implicit reasoning involved
in the identification process that renders the overall task
challenging. We plan to address that in our future work.
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Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. Compositional Semantic
Parsing with Large Language Models, September 2022.
arXiv:2209.15003 [cs].

[9] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu,
Kyle Richardson, Peter Clark, and Ashish Sabharwal. De-
composed Prompting: A Modular Approach for Solving
Complex Tasks, April 2023. arXiv:2210.02406 [cs].

[10] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.

Tree of thoughts: Deliberate problem solving with large
language models, 2023.

[11] Jieyi Long. Large language model guided tree-of-thought,
2023.

[12] Chikara Hashimoto, Kentaro Torisawa, Stijn De Saeger,
Jong-Hoon Oh, and Jun’ichi Kazama. Excitatory or in-
hibitory: A new semantic orientation extracts contradic-
tion and causality from the web. In Jun’ichi Tsujii, James
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Table 2 Accuracy of the identification of each logic component. G4o-mini: GPT-4o-mini.
Model Ack Miti No evi Not Pro(X, Y) Pro(X, Z) Pro(Y, Z) Pro(Z, Y) Suffi Sup(X, Z) Sup(Z, Y) Avg

G4o-mini .92 .84 .44 .72 .96 .96 .88 .68 .52 .44 .736

Table 3 The mapping between the original CA logic patterns defined in the CALSA paper and the logic components explored in this
paper.

logic patterns logic components
Mitigation Acknowledge(IA), Mitigate(IA, Z)
Alternative Acknowledge(IA), Sup(Z, Y)
No evidence No evi(IA)

Another true cause Not Pro(X, Y), Pro(Z, Y)
Missing mechanism #1 Pro(X, Z), Sup(Z, Y)
Missing mechanism #2 Pro(Z, Y), Sup(X, Z)

No need to address Sufficient
Negative effect due to y Pro(Y, Z), Good(Z)

Positive effects of a different perspective from y #1 Pro(X, Z), Good(Z)
Positive effects of a different perspective from y #2 Sup(X, Z), Bad(Z)

Table 4 The mapping between the logic components and the template for their corresponding binary questions. Contents within curly
brackets will be filled in based on the actual IAs.

logic components binary questions template
Acknowledge(IA) Does CA acknowledge that {IA’s logic}?
Mitigate(IA, Z) Does CA {causal relation stated in IA} can be mitigated by something?

No evi(IA)
Does CA argue that there is no evidence

in the initial-argument to support {IA’s logic}?
Not Pro(X, Y) Does CA argue that {X} does not promote {Y}?

Pro(X, Z) Does CA argue that {X} promotes something besides {Y}?
Pro(Y, Z) Does CA argue that {Y} promotes something?
Pro(Z, Y) Does CA argue that something besides {X} promotes {Y}?
Sufficient Does CA argue that {Y} is not a problem that requires any action?
Sup(X, Z) Does CA argue that {X} suppresses something?
Sup(Z, Y) Does CA argue that something suppresses {Y}?
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