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Abstract
We study the generalization capabilities of Large Lan-

guage Models through the lens of mathematical reasoning,
asking if these models can recognize that two structures
are the same even when they do not share the same nomen-
clature. We propose a human study to evaluate if LLMs
reproduce proofs that they have most likely seen during
training, but when the symbols do not match the ones seen.
To test this in a controlled scenario, we look at proofs in
propositional calculus, foundational for other logic sys-
tems, semantically complete and widely discussed online.
We replace the implication operator (→) with an unrelated,
arbitrary symbol (♠) and ask experts to evaluate how the
output of a selection of LLMs changes in terms of com-
pliance, correctness, extensiveness and coherence. Our re-
sults show that nearly all our tested models produce lower
quality proofs in this test, in particular open-weights mod-
els, suggesting the abilities of these LLMs to reason in this
context have important limitations.

1 Introduction
Mathematical reasoning is a key aspect of human intel-

ligence that encompasses pattern recognition and logical
entailment. The development of artificial intelligence sys-
tems capable of tasks such as solving applied and theoreti-
cal mathematical problems has been a long-standing focus
of research in the fields of machine learning and natural
language processing, dating back to the 1960s [1, 2].

Our interest in this topic rises from recent attempts to
use language models for theorem proving by means of
ITPs’ programming languages and databases of theorems
with their proofs. Deep learning models can be trained
in one of these many programming languages, and then
used to generate mathematical proofs. Data sources for

neural theorem proving in ITPs include interactive learning
environments that interface with ITPs, and datasets derived
from proofs in ITP libraries.

When it comes to mathematical reasoning, and in par-
ticular to the ability of models to understand logical state-
ments, we note that despite the abundance of studies, pre-
vious works generally assume that only “variables” are the
ones not constant throughout problems. However, we see
that in mathematics different nomenclatures are used in dif-
ferent areas, as well as in different time periods, to express
the same ideas. Examples of this fact include the use of ⊃
instead of → in logic, particularly in texts written before
computers; Leibniz’s d 𝑓

d𝑥 , Lagrange’s 𝑓 ′, and Newton’s ¤𝑓
notation in differential calculus; the different notation for
the inner product for physicists 〈·|·〉 and for mathematicians
〈·,·〉; prefix 𝑓 (𝑥) and postfix (𝑥) 𝑓 notations for functions;
and different notations for the von Neumann generated al-
gebra, such as: 𝑊∗ (·,·) and · ∨ ·, to name a few.

As we attempt to use LLMs to tackle proof generation
tasks, for example using the “informal theorem proving”
approach (please see §2 for more details on this), we think
researchers and practitioners need to take this fact into
consideration. Furthermore, and in contrast to all these
models, current state-of-the-art models in NLP are trained
on large datasets of text extracted from the web. In this case,
we have limited or no control on the kinds of expressions
and/or operators that the models are exposed to during
training. We can, however, still assume the models have
been exposed mostly to the standard nomenclature.

Given this scenario, we ask: can these models recognize
that two structures are the same even if they do not share the
same nomenclature? For example, can models reproduce
proofs that they have most likely seen during training, but
when the symbols do not match the ones seen? If so, to
what extent are these proofs plausible and correct? In order

― 785 ―

言語処理学会 第31回年次大会 発表論文集（2025年3月）

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



to answer these questions, we perform an in-depth human
evaluation to assess the quality of the output generated by
LLMs when prompted to generate proofs similar to the
ones seen during training but with expressions that use a
different notation.

2 Related Work
Automated Theorem Proving The first proofs us-

ing computers started appearing as early as the 1950s, soon
after electronic computers became available. This played
a big role in the development of the field of automated rea-
soning, which itself led to the development of AI. Most of
the early work on computer-assisted proof was devoted to
automated theorem proving (ATP) [3], in which machines
were expected to prove assertions fully automatically. The
increased availability of interactive time-sharing computer
operating systems in the 1960s allowed the development
of interactive theorem provers (ITPs) in which the ma-
chine and the user work together to produce a formal proof.
While ATPs include proof-search algorithms to generate
whole proofs, ITPs usually check the validity of human
input statements, although they may also include reduced
automated tools.

More recently, work on “informal” theorem proving has
presented an alternative medium for theorem proving, in
which statements and proofs are written in a mixture of
natural language and symbols used in “standard” math-
ematics (e.g., in LATEX), and are checked for correctness
by humans. Here we find the work of [4] who developed
NaturalProofs, a large-scale dataset of 32k informal math-
ematical theorems, definitions, and proofs, and provided a
benchmark for premise selection via retrieval and gener-
ation tasks. Most of the data is taken from websites like
proofwiki.com, and though this enables more flexibil-
ity when proving, the task is approached in a way similar
to ITPs.

Mathematical Reasoning in LLMs Early works
attempting to study the ability of models to recognize pat-
terns in mathematical expressions focused on the manipu-
lation of simple expressions using standard notation. For
example, [5] trained models on datasets in which pairs of
examples contain Boolean logic and arithmetic expressions
which are known to be equivalent. For example, expres-
sions like 𝑐2 and (𝑐 · 𝑐) + (𝑏 − 𝑏) are equivalent. However,
expressions with the same structure, but different variables,

such as 𝑐 · (𝑎 ·𝑎+𝑏) and 𝑓 · (𝑑 ·𝑑+𝑒), are not. They showed
that such models were capable of relating non-paired ex-
pressions, like 𝑎 − (𝑏 − 𝑐) and 𝑏 − (𝑎 + 𝑐), as negations of
each other.

[6] studied the ability of neural networks to understand
logical entailment via training models on synthetic datasets
of logical statements and their evaluations (True/False).
Concretely, they generated datasets of triples of the form
(𝐴, 𝐵, 𝐴 ⊨ 𝐵), where 𝐴 and 𝐵 are formulas of propositional
logic, and 𝐴 ⊨ 𝐵 is 1 if 𝐴 entails 𝐵, and 0 otherwise. They
concluded that, from the models available at the time, those
with a tree structure seemed to be better for domains with
unambiguous syntax.

In these works, expressions are generated automatically
starting from a set of simple rules plus a set of arbitrary
combinations. This allows to scale and control the types
of expressions that are shown to the model during train-
ing/inference. Later works, like [7] and the more recent [8]
shift to a question-answer format using natural language,
with the release of the GSM8K and GPQA datasets, re-
spectively, while also extending the class of questions to
other areas of mathematics, like calculus and probability,
where the ability to control for the type of expressions is
reduced.

3 Proposed Approach

To study the posed research questions under a controlled
scenario, we look at proofs in propositional calculus, a
branch of formal logic that deals with propositions, which
can be true or false, and relations between propositions,
including the construction of arguments based on them
[9]. Propositional calculus, also known as zeroth-order
logic, does not deal with quantifiers over non-logical ob-
jects (unlike first-order or higher-order logic). There are
several reasons that we think make this the ideal scenario
for our study: (1) All the machinery of propositional logic
is included in first-order logic, higher-order logic, and all
mathematics. In this sense, propositional logic is the foun-
dation of other logic systems; (2) Propositional calculus is
semantically complete, i.e. any tautology (true formulas)
can be proved with the formal axioms and the rules of in-
ference of the system, and (3) Being the subject of common
undergraduate courses, demonstrations in this context have
been widely discussed online so we can reasonably assume
that LLMs have been exposed to these type of proofs.
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Propositional calculus is typically studied with a formal
system, which contains a formal language and a deduc-
tive system. The language is composed of a set of well-
formed formulas, which are strings of symbols from an
alphabet (composed of propositional variables and propo-
sitional connectives) formed by a formal grammar (forma-
tion rules). The deductive system, in turn, contains the
rules of inference, a function which takes premises and re-
turns conclusions. To assess how models generalize in this
scenario, we compared proofs generated by these models
using ’usual’ and ’unusual’ symbols for connectives.

We use a standard proof system usually referred to as
a Hilbert system. It is a deductive system that generates
theorems from axioms (a tautology taken as starting point
for further reasoning) and modus ponens. Modus ponens
can be summarized as: If P implies Q and P is known
to be true, one can conclude that Q must also be true. It
is generally expressed as {𝑃 → 𝑄, 𝑃} ` 𝑄, where the
turnstile symbol (`) denotes derivability, i.e. there is a
formal derivation of a theorem from the axioms. As for
connectives, we limit it to the logical and (∧), logical or
(∨), the negation operator (¬), and the implication operator
(→). For the axioms, we use a common set of 14 axioms
used in undergraduate courses, shown in Figure 1 in our
supplementary material (§A).

For our study we propose to replace the implication oper-
ator (→) with an unrelated, arbitrary symbol (♠). In order
to produce a significant perturbation in the input token dis-
tribution, we specifically select the unicode representation
of the symbol (U+2660) for the replacement. Alternative
replacements are left for future work. We select two com-
mon theorems from propositional calculus extracted from
[10], shown in Figure 2 and Figure 3, in §A, and test models
in two different scenarios, as follows.

Full Context (FC) Our first evaluation scheme is
intended to simulate a noisy retrieval step, prior to the proof
generation. Concretely, we offer the model the complete
set of axioms together with the selected rule of inference,
modus ponens.

Selected Context (SC) We assume that the rele-
vant axioms for the requested proof have already been se-
lected by an oracle, and we offer only these axioms and
rule of inference to the model input. For each question, we
manually select the axioms required (Axioms 6, 7, 10 for
Question 1; Axioms 7, 8 for Question 2).

A key point of our study is to ensure that the gener-
ated proofs are checked by mathematicians. Previous work
has stressed the need to rely on experts for evaluation of
theorem proving systems, including [11], who carry on
an in-depth annotation where an expert annotator is pre-
sented with the theorem, proof-so-far, and a generated
next-step. [12] also highlight that human evaluation of
advanced mathematics that approaches research level is
expensive and requires experts. The evaluation of the out-
put of the language model for their work was performed by
the authors, who are all mathematicians.

To perform the evaluation, we concretely rely on one
volunteer (one of the authors of this paper) who has a
degree in mathematics. We design an annotation interface
where for each case, we show the annotators the exact input
fed to the model, as well as the output generated. Below,
we list the tasks that we require our annotators to perform.

• First, we ask the annotators if the output of the model
contains a proof or not.

• We present the steps of the correct proof and ask the
annotators to judge if each step appears in the output
of the model. Additionally, if the step invokes an
axiom or rule of inference, we ask them to do the
following.

– If the step invokes an axiom, to check if variables
were substituted correctly.

– If the step uses a rule of inference, we ask them
to check if the rule is properly invoked.

– To judge whether the step contributes to the proof
in the sense that it stirs the overall flow of the
proof in the right direction towards conclusion.

• With respect to the coherence of the overall text, we
ask the annotators to rate the output in a scale of 0 to
4 via the following labels: “Very Incoherent, Incoher-
ent, Neither Coherent nor Incoherent, Coherent, Very
Coherent”.

4 Results
For this study, we consider the following models:

(1) API-based LLMs, including ChatGPT (gpt-3.5-turbo-
0125) [13], Claude 3 Opus (claude-3-opus-20240229)
[14], (2) Open-weights models, including Llama 3 (Meta-
Llama-3-8B-Instruct) [15, 16], Llama 3.1 (Llama-3.1-8B-
Instruct) [17] and Gemma 2 (gemma-2-9b-it) [18]. The
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Table 1 Summary of the results of our human evaluation study, where Ctx. is short for context. Bold numbers indicate the best score
for each pair of (→, ♠) prompts for a given model, and we highlight the best score of all across the FC and SC scenarios for each model.

Model Ctx. Compliance Extensiveness Correctness Flow Coherence

→ ♠ → ♠ → ♠ → ♠ → ♠

ChatGPT SC 100% 100% 62.38% 49.52% 24.29% 5.71% 24.76% 17.14% 2.67 2.33
FC 100% 100% 36.19% 30.48% 7.14% 4.76% 20.95% 12.86% 3.00 2.60

Claude 3 Opus SC 100% 100% 95.24% 93.14% 76.19% 60.57% 80.95% 70.29% 3.83 3.40
FC 100% 100% 85.71% 75.71% 60.95% 27.62% 71.43% 41.43% 3.67 3.00

Gemma 2 (9B) SC 33.33% 0% 11.90% - 0% - 2.38% - 4.00 -
FC 50.00% 0% 16.67% - 0% - 2.38% - 4.00 -

Llama 3 (8B) SC 100% 83.33% 49.52% 41.43% 2.38% 2.38% 11.90% 4.76% 1.83 1.80
FC 100% 83.33% 35.71% 21.90% 9.05% 2.38% 11.43% 0% 2.17 1.60

Llama 3.1 (8B) SC 100% 100% 42.38% 40.95% 0% 2.38% 4.76% 5.71% 1.17 1.17
FC 100% 100% 32.38% 24.29% 3.33% 0% 5.71% 4.76% 2.00 1.50

latter models are obtained from HuggingFace, and quan-
tized to 4-bits [19] to fit our GPU memory. For each input,
we obtain 3 outputs from each model using a different ran-
dom seed. We compute the following metrics to summarize
model behavior.

• Percentage of times the model generated output that
contains a proof, which we consider a measure of
model compliance to our instruction (Compliance).

• Percentage of steps from the actual proof that appear
in the generated proof, or to which extent it used the
needed axioms and modus ponens (Extensiveness).

• Percentage of steps that appear in the generated proof
and were correctly applied. In other words, the steps
that are correct (Correctness).

• Percentage of steps that appear in the output and pro-
vide a expression which is a step towards finalizing
the proof, even if it was not correctly deduced (Flow).

• Average coherence score reported for the overall text
output from a given model (Coherence).

Table 1 summarizes the results of our evaluation efforts.
We can clearly see that most models (with the exception
of Gemma 2) show decreased performance across all met-
rics when prompted with (♠). Furthermore, most models
(with the exception of Llama 3.1) showed decreased per-
formance in the Full Context compared to the Selected
Context. Most interestingly, the score for Flow was gener-
ally much higher than the Correctness, indicating that the
model ’remembers’ the right answer, even if it does not
’remember’ how to deduce it.

The model with the best performance across all measures
was Claude 3 Opus. Like for most models, its Extensive-
ness measure was subject to a decrease when one compares

the easiest scenario (SC with →) to the hardest scenario
(FC with ♠), but its lowest value (75.71%) was still higher
than the highest Extensiveness measure of any other model.
However, it did experience a sharp decrease in both Cor-
rectness (from 76.19% to 27.62%) and Flow (from 80.95%
to 41.43%), the largest different performance of any of the
measures. As table shows, there is also a big difference in
performance between the API-based LLMs and the Open-
weights models. The Gemma 2 model refused to provide
a proof in most case, as it can be seeing by its Compliance
measure, making it impossible to draw conclusions about
its abilities. We think this suggests open-weights models
are significantly behind APIs, which is well-aligned with
performance measured in popular automatic benchmarks.

5 Conclusions
This paper studies the generalization capabilities of LLM

through the lens of mathematical reasoning. We perform
an in-depth human evaluation of the output of LLMs when
they are prompted to produce basic proofs in propositional
calculus, comparing their answers when we replace the
implication operator (→) with an unrelated, arbitrary sym-
bol (♠). Our results show that nearly all our tested models
produce lower quality proofs in this test, in particular open-
weights models, suggesting the abilities of these LLMs to
reason in this context have important limitations. For fu-
ture work we would like to extend this study to incorporate
more proofs, models, and multiple annotators. We would
also like to analyze how models react to other input per-
turbations, for example using other replacement symbols,
and/or alternative representations for them.
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A Appendix

Prompt (portion)

(Ax 1)( (𝜙 ∧ 𝜓) → 𝜙)
(Ax 2)( (𝜙 ∧ 𝜓) → 𝜓)

(Ax 3)(𝜙 → (𝜓 → (𝜙 ∧ 𝜓) ) )
(Ax 4)(𝜙 → (𝜙 ∨ 𝜓) )
(Ax 5)(𝜙 → (𝜓 ∨ 𝜙) )

(Ax 6)( (𝜙 → 𝜒) → ( (𝜓 → 𝜒) → ( (𝜙 ∨ 𝜓) → 𝜒) ) )
(Ax 7)(𝜙 → (𝜓 → 𝜙) )

(Ax 8)( (𝜙 → (𝜓 → 𝜒) ) → ( (𝜙 → 𝜓) → (𝜙 → 𝜒) ) )
(Ax 9)( (𝜙 → 𝜓) → ( (𝜙 → ¬𝜓) → ¬𝜙) )

(Ax 10)(¬𝜙 → (𝜙 → 𝜓) )
(Ax 11)(𝜙 ∨ ¬𝜙)

(Ax 12)( (𝜙 ∧ ¬𝜙) → 𝜓)
(Ax 13)( (𝜙 → (𝜓 ∧ ¬𝜓) ) → ¬𝜙)

(Ax 14)(¬¬𝜙 → 𝜙)
(Modus Ponens){𝑃 → 𝑄, 𝑃} ` 𝑄

Figure 1 Portion of the prompt provided to the LLMs showing
the content of the full context provided, namely, the axioms and
rules of inference we allow the models to use.

Question

Question: Prove that ` ( (¬𝑃 ∨𝑄) → (𝑃 → 𝑄) ) .
Answer:

( (¬𝑃 → (𝑃 → 𝑄) ) → ( (𝑄 → (𝑃 → 𝑄) ) →
( (¬𝑃 ∨𝑄) → (𝑃 → 𝑄) ) ) ) (Ax 6)

(¬𝑃 → (𝑃 → 𝑄) ) (Ax 10)
( (𝑄 → (𝑃 → 𝑄) ) → ( (¬𝑃 ∨𝑄) → (𝑃 → 𝑄) ) ) 1, 2 MP

(𝑄 → (𝑃 → 𝑄) ) (Ax 7)
( (¬𝑃 ∨𝑄) → (𝑃 → 𝑄) ) 3, 4 MP

Figure 2 Details of the first question (Question 1) utilized for
our study, also showing the actual proof which we allow our
annotators to see.

Question

Question: Prove that { (𝑃 → 𝑄) , (𝑄 → 𝑅) } ` (𝑃 → 𝑅) .
Answer:

(𝑃 → 𝑄) (hyp)
(𝑄 → 𝑅) (hyp)

( (𝑄 → 𝑅) → (𝑃 → (𝑄 → 𝑅) ) ) (Ax 7)
(𝑃 → (𝑄 → 𝑅) ) 2, 3 MP

( (𝑃 → (𝑄 → 𝑅) ) → ( (𝑃 → 𝑄) → (𝑃 → 𝑅) ) ) (Ax 8)
( (𝑃 → 𝑄) → (𝑃 → 𝑅) ) 4, 5 MP

(𝑃 → 𝑅) 1, 6 MP

Figure 3 Details of the second question (Question 2) utilized
for our study, also showing the actual proof which we allow our
annotators to see.
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