
Semantic feature engineering for in-context AutoML

Afonso Lourenço1,2,∗　Hiroaki Kingetsu2　Tsuguchika Tabaru2　Goreti Marreiros1

1 GECAD, Polytechnic of Porto, Portugal　2 Fujitsu Laboratory Ltd., Japan
　∗ Internship at Fujitsu

{fonso,mgt}@isep.ipp.pt　{h.kingetsu,tabaru}@fujitsu.com

Abstract
Machine learning for structured data has lagged be-

hind text and image, with current methods remaining
application-dependent and requiring extensive algorithm
selection and hyperparameter tuning. Large tabular models
(LTMs) offer a promising solution for context-aware Au-
toML by pretraining on diverse tabular datasets. However,
scalability remains a challenge due to the quadratic growth
of contexts. This paper introduces a novel in-context Au-
toML paradigm focused on semantically informed feature
engineering, where input data, rather than model parame-
ters, are treated as learnable components. By leveraging
task-specific insights from data card descriptions and his-
torical logs, a large language model (LLM) enhances con-
text creation for a LTM. Empirical results on ten benchmark
datasets demonstrate this paradigm delivers competitive
performance compared to conventional AutoML methods.

1 Introduction
Over the past two decades, machine learning for struc-

tured data has lagged behind advances in text and image
modalities. Benchmark studies still find gradient-boosted
decision trees as the state-of-the-art for supervised tabular
learning [1]. The absence of spatial invariances to inform
prior selection as well as discontinuous, heterogeneous,
and uninformative features make the selection of a machine
machine learning pipeline highly application-dependent,
covering two critical stages: data pre-processing (wran-
gling, integration, and transformation to improve feature
quality) and model building (automating algorithm selec-
tion and hyperparameter tuning), shown in Figure 1.

Despite traditional AutoML methods simplifying the
process, these typically search iteratively from scratch for
new tasks, ignoring human priors and historical insights,
such as model architecture knowledge. This results in time-

Figure 1 New AutoML paradigm driven by LTMs

consuming and computationally expensive cycles of model
selection and hyperparameter tuning. Additionally, these
methods rely on predefined strategies, limiting their abil-
ity to adapt based on insights from the learning process,
and their black-box nature further reduces interpretability,
excluding human understanding from the process [2, 3, 4].

To tackle these issues, one should leverage both ma-
chine intelligence and human design patterns. Instead of
jumping into solving a new task directly, one should uti-
lize all contextual information to interpret the task at hand,
and draw from past experiences. In this regard, recently
proposed large tabular models (LTMs) offer a natural solu-
tion to context-aware AutoML, by finetuning a cross-table
pretrained tabular transformer, instead of training mod-
els on single tables [5]. Similarly to large language models
(LLMs), LTMs trained on diverse tabular datasets can serve
as knowledge repositories [6, 7]. These obviate the need
for algorithm selection and hyperparameter tuning, with
the bottleneck lying in contexts scaling quadratically. Nat-
urally, this limits performance, and contrasts with coven-
tional AutoML that tends to improve as the amount of
data increases. Thus, posing a new in-context paradigm,
referred as IC-AutoML and shown in Figure 1, solely fo-
cused on data pre-processing to determine what to actually
put in a pre-tuned model’s context. While conventional
methods need to adapt the model parameters, this paradigm
focuses on input data as learnable parameters, decoupling
algorithm design from a general-purpose LTM [8].

― 1610 ―

言語処理学会 第31回年次大会 発表論文集（2025年3月）

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



To determine the model’s context, various strategies for
transforming a big dataset into a sketch have been proposed
[9]. Yet these are exclusively data-driven, not understand-
ing the task from a semantic perspective. Instead, this work
hypothesizes that crucial information to classify a query
point can be found semantically via LLMs, incorporating
descriptions of data cards, and historical logs into prompts,
to not only engineer compact feature representations but
also explain the choices behind a pre-processing operation
for context optimization. For example, understanding the
relationship between a city and its zip code for data clean-
ing constraints, or how age is intuitively more relevant than
ward census for disease prediction [10]. Similarly to how
recent works have used LLMs for optimization of another
LLM [11], this work uses LLMs for optimization of a LTM,
acting as interactive agents, capable of generating code and
prompt editing. Experiments performed on ten benchmark
datasets show that the new proposed paradigm is as good
as current state of the art methods for tabular classifica-
tion, i.e. XGBoost [12], LightGBM [13], CatBoost [14],
AutoGluon [2], H2O [3], and PyCaret [4].

2 Related work
Recent efforts have explored applying LLMs’ validated

capabilities in table understanding to supervised learning
of tabular data, predicting unseen samples by continuing
textual descriptions, e.g., ”The column name is Value”
[15]. When supported with extensive tabular-specific pre-
training, tabular prompting in LLMs can outperform tradi-
tional methods [16]. Nonetheless, tokenization and multi-
nomial objectives of LLMs often result in fragmented pat-
terns, making it expensive to autoregressively model con-
tinuous variables or whole numbers. To overcome this, re-
cent efforts have introduced LTMs, i.e. transformer-based
architectures which are specifically trained on heteroge-
neous tabular datasets to better handle numeric data [6].
For instance, allowing to represent a decimal feature with
a single floating-point number, whereas LLAMA requires
four tokens for the same value [17]. However, LTM’s
quadratic complexity cannot scale with samples, features,
and categories, which limits its application to real-world
scenarios. Thus, similarly to LLM prompt engineering
[18], various context optimization techniques have been
proposed, including k-means centroids [19], dataset distil-
lation [20], and retrieval-based strategies [21].

These data-driven context optimization methods lack se-
mantic task understanding. In this context, LLMs can offer
significant promise as black-box optimizers to iteratively
generate decision rules [22], and code for feature engineer-
ing (FE) using user-provided dataset descriptions, feature
names, data types, missing values, and random samples
[23], with iterative feature selection guided by validation
accuracy scores [24, 23]. Building on previous work that
combines LLMs with genetic algorithm (GA) optimization
for tasks like neural architecture search [25], and feature
selection [24], this paper proposes using LLMs as evolu-
tionary operators within a GA framework to optimize FE
for LTM context optimization.

3 Methodology
In this work, in-context Auto-ML is referred to as the

construction of a map from in-context examples to a LTM
without any updates to the LTM’s parameters. From a
variance standpoint, being a pre-tuned, but untrained pre-
dictor with many hyperparameters and multi-head atten-
tion, LTMs have extremely high sensitivity to individual
training samples, which translates in an increased ability
to choose submodels and vanishing variance. From a bias
standpoint, hyperparameters are pre-tuned to be optimal
for a set of tasks defined by the prior [8]. If the prior
has broad support and does not concentrate away from the
true hypothesis, the posterior predictive distribution (PPD)
approximates the true distribution. Larger datasets lead
to more complex PPDs, and the training set size acts as a
regularizer on the model’s complexity. While LTMs en-
sure vanishing variance, bias decreases only if the context
is appropriately localized around the test feature. The in-
context learning error decreases with a more informative
input space [26], underscoring the need for localization
strategies that restrict the context to concept-related exam-
ples. This highlights the role of inductive biases, such as
smoothness, cluster, and manifold assumptions, in guiding
model adaptation. Leveraging human knowledge to bias
the parameter space structure can yield state-of-the-art Au-
toML, enhancing sample efficiency and generalization.

Building on this intuition, this work proposes a localiza-
tion strategy based on semantic similarity to reduce model
bias. Particularly, one can argue that the context is not only
sensitive to the choice of the instances but also the input fea-
tures used to represent data, suggesting that improvements

― 1611 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



in the earlier context optimization work [19, 20, 21] may be
possible. To address this, one can use LLMs proven capa-
bilities on FE [23, 24] to significantly enrich the engineered
context, with devised prompts including details about the
dataset’s collection, task’s objective, explanation of the tar-
get variable, feature descriptions, and samples of instances
values. For this purpose, this work relies on various prompt
engineering techniques for multi-step reasoning, namely,
chain-of-thought (CoT) [18], role-playing [27], and other
tabular specific serialization techniques [15]. Moreover, it
is important to emphasize both exploration and exploitation
of the prompt space. On one hand, to deal with the high
variance of different contexts for the downstream tasks, one
should explore the space by enumerating and selecting the
best prompt from a number of candidates, e.g. augmenting
it by re-sampling [28]. On the other hand, to emphasize
exploitation, one can collect the incorrectly predicted cases
and analyze the corresponding root cause to edit existing
prompts [11]. Building on previous work that combines
LLMs with GA optimization [24, 25], this work uses LLMs
as a evolutionary operator within a GA framework to effi-
ciently explore and exploit the FE solution space. Overall,
this GA-inspired optimization framework encompasses six
steps: (1) population initialization derived by prompting
the LLM 𝑌 times in a zero-shot manner, with task descrip-
tion, features, and data types, (2) tournament selection
method of parents for evolutionary pressure to the opti-
mization process, (3) LLM as the evolutionary operator via
few-shot role-playing and chain-of-tought explanations, (4)
child evaluation via LLM-generated code to run the LTM
with the suggested features, (5) elitism replacement based
on the obtained validation accuracy, with a hard constraint
of not replacing the top 𝐾 feature combinations, (6) ran-
dom immigrant invoked when the best solution does not
change for 𝑅 epochs, by randomly replacing a solution with
validation accuracy under the mean by a new solution gen-
erated via zero-shot prompting. Prompt templates can be
found in the Appendix. This iterative, evolutionary pro-
cess, is repeated for 𝐸 epochs, culminating in the selection
of the best one within the final population as the optimal
data pre-processing strategy.

4 Experiments
In these experiments, LLaMA3 70B [17] was used as

the backbone LLM, and the TabPFN [6] as the LTM. The

initialization stage begins with the LLM being asked to
assume the role of a Machine Learning Engineer to rec-
ommend a list of important features based on the given
task and dataset features in a zero-shot manner. The
LLM is prompted twenty times to generate different feature
sets, forming the initial population for the evolution algo-
rithm. The evolution stage comprises 17 distinct roleplays:
Domain Expert, Public Policy, Philosopher, Consultant,
Professor, Coach, Data Scientist, Data Analyst, Machine
Learning Engineer, Manager, AI/ML Researcher, Data En-
gineer, Ethical AI Advocate. These roleplays facilitate
crossover and mutation operations within the LLM, lever-
aging diverse perspectives for semantically-driven feature
engineering. While the effectiveness of this approach de-
pends heavily on the quality of dataset descriptions, prior
studies [22, 23, 24] have explored these effects in detail.
Building on their findings, we included in the prompts a de-
tailed dataset context, input and target concepts, few-shot
examples, and CoT explanations. To ensure comprehensive
evaluation, a diverse set of binary classification datasets
were used: Credit1）(150.000 instances, 11 features, im-
balanced), Diabetes2）(70.692 inst., 22 feat., bal.), Heart3）

(70.000 inst., 12 feat., bal.), Insurance4）(50.882 inst., 48
feat., imb.), Bank5）(45.211 inst., 38 feat., imb.), Cars6）

(16.734 inst., 42 feat., bal.), Stroke7）(9.722 inst., 22 feat.,
bal.), Student8） (4.424 inst., 57 feat., imb.), Credit-G9）

(1.000 inst., 17 feat., bal.), and Pima Indians Diabetes10）

(536 inst., 8 feat., bal.).
These datasets were selected for their suitability in evalu-

ating the impact of semantically-driven feature engineering
on model performance, as they present problems amenable
to domain knowledge-based feature representations. Table
1 summarizes accuracy performance across these, ordered
by dataset size and evaluated over ten seeds. Hyperparam-
eter settings can be found in the Appendix. IC-AutoML
demonstrated competitive results, performing best on the

1） kaggle.com/c/GiveMeSomeCredit
2） kaggle.com/datasets/alexteboul/diabetes-health-indicators-

dataset
3） kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
4） kaggle.com/datasets/owaiskhan9654/health-insurance-lead-

prediction-raw-data
5） archive.ics.uci.edu/dataset/222
6） kaggle.com/datasets/nelgiriyewithana/australian-vehicle-prices
7） kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
8） archive.ics.uci.edu/dataset/697
9） kaggle.com/datasets/uciml/german-credit
10） kaggle.com/datasets/uciml/pima-indians-diabetes-database

― 1612 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



Table 1 Accuracy performance
IC-AutoML XGBoost LightGBM CatBoost AutoGluon H2O PyCaret

Credit .730 ± .022 .662 ± .030 .658 ± .031 .688 ± .027 .692 ± .026 .722 ± .023 .690 ± .028
Diabetes .758 ± .029 .764 ± .018 .774 ± .017 .758 ± .020 .772 ± .019 .736 ± .022 .768 ± .018

Heart .766 ± .017 .758 ± .019 .766 ± .016 .766 ± .018 .758 ± .021 .748 ± .020 .756 ± .019
Insurance .726 ± .020 .730 ± .022 .702 ± .025 .710 ± .023 .708 ± .021 .724 ± .020 .702 ± .024

Bank .828 ± .027 .745 ± .019 .792 ± .016 .778 ± .021 .814 ± .015 .878 ± .013 .844 ± .016
Cars .836 ± .038 .788 ± .019 .796 ± .018 .794 ± .019 .818 ± .016 .824 ± .014 .812 ± .017

Stroke .930 ± .045 .946 ± .016 .952 ± .014 .950 ± .015 .962 ± .010 .958 ± .012 .950 ± .013
Student .910 ± .034 .864 ± .022 .850 ± .021 .890 ± .015 .886 ± .018 .914 ± .012 .892 ± .015
Credit-g .754 ± .043 .712 ± .027 .693 ± .033 .701 ± .029 .740 ± .024 .748 ± .022 .736 ± .025

Pima .794 ± .017 .786 ± .019 .778 ± .020 .783 ± .018 .767 ± .022 .791 ± .016 .788 ± .017
Avg. Rank 2.55 5.05 4.95 4.80 3.75 2.90 4.0

Credit (.730), Cars (.836), Credit-g (.754) and Pima (.794)
datasets. Overall, achieving an average rank of 2.55
across diverse datasets, showcasing its general effective-
ness. Among other methods, H2O achieved the highest
average rank (2.90), particularly excelling on the Bank
(0.878) and Student (0.914) datasets. XGBoost, Light-
GBM, and CatBoost performed best on larger datasets like
Diabetes (.774), Heart (.766), and Insurance (.730), with
average ranks around 5.0. Interestingly, IC-AutoML did
not show a clear advantage on smaller datasets, despite
processing contexts limited to 1,000 instances at a time.

The engineered features varied widely across datasets.
For example, in the Credit dataset, the LLM proposed 47
new features, with the final selection comprising 13 of
them, including log transformations to normalize skewed
features such as revolving utilization and debt ratio, binning
operations to flag high debt-to-income ratios, and interac-
tion features like income per dependent or a composite
delinquency score. In healthcare datasets like Diabetes
(42 features suggested), Heart (43), and Stroke (56), do-
main knowledge-driven feature interactions proved most
beneficial. For instance, in the Stroke dataset, the LLM
suggested a stress proxy combining employment type, ur-
ban residence, smoking status, and marital history; a health
deterioration rate integrating glucose levels, BMI, and age;
and a loneliness index derived from marital status, employ-
ment history, and age. Conversely, in the Diabetes dataset,
suggested features included a socioeconomic disparity in-
dicator combining income and education levels, a proactive
health behavior score averaging cholesterol checks, blood
pressure management, and healthcare coverage, and a co-

morbidity score summing key health risk factors (e.g., high
blood pressure, smoking). Another impactful feature was
a health risk-adjusted age metric, calculated as the product
of age and a composite health risk score.

5 Conclusion
This work shows how LTMs enable a promising learning

paradigm, referred to as IC-AutoML. Rather than relying
on extensive model selection and hyperparameter tuning,
this approach focuses on data pre-processing as a localiza-
tion strategy for a pre-tuned, yet untrained, LTM. Specif-
ically, this work employs LLMs as evolutionary operators
within a GA framework to explore the feature engineer-
ing solution space, utilizing prompts enriched with dataset
details, task objectives, target variable explanations, fea-
ture descriptions, and instance samples. Dynamic role
selection [27] expands the configuration space, potentially
improving solutions at the cost of increased computation.
To address this, prior evaluations of feature engineering
decisions refine the configuration process CoT [18].

This work emphasizes the context sensitivity to input
features, leveraging semantically-driven FE. Future re-
search will explore other pre-processing operations, such
as error detection and data cleaning [29], along with the
optimization of instance selection [19, 20, 21]. Addition-
ally, the interaction with users in a human-in-the-loop IC-
AutoML framework warrants further investigation.

Acknowledgements
This work is supported by Fujitsu Laboratory Ltd. and

FCT under project doi.org/10.54499/UIDP/00760/2020.

― 1613 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



References
[1] Duncan McElfresh, Sujay Khandagale, Jonathan Valverde,

Vishak Prasad C, Ganesh Ramakrishnan, Micah Gold-
blum, and Colin White. When do neural nets outperform
boosted trees on tabular data? Advances in Neural
Information Processing Systems, Vol. 36, , 2024.

[2] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang
Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
Autogluon-tabular: Robust and accurate automl for struc-
tured data. arXiv preprint arXiv:2003.06505, 2020.

[3] P. Stetsenko. Machine Learning with Python and
H2O, October 2022.

[4] Moez Ali. PyCaret: An open source, low-code ma-
chine learning library in Python, April 2020.

[5] Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li,
George Karypis, and Mahsa Shoaran. Xtab: Cross-
table pretraining for tabular transformers. arXiv preprint
arXiv:2305.06090, 2023.

[6] Noah Hollmann, Samuel Müller, Katharina Eggensperger,
and Frank Hutter. Tabpfn: A transformer that solves small
tabular classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

[7] David Bonet, Daniel Mas Montserrat, Xavier Giró-i Nieto,
and Alexander G Ioannidis. Hyperfast: Instant classifica-
tion for tabular data. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, Vol. 38, pp. 11114–
11123, 2024.

[8] Thomas Nagler. Statistical foundations of prior-data fitted
networks. In International Conference on Machine
Learning, pp. 25660–25676. PMLR, 2023.

[9] Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne
Longpre, Nathan Lambert, Xinyi Wang, Niklas Muen-
nighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al.
A survey on data selection for language models. arXiv
preprint arXiv:2402.16827, 2024.

[10] Zifeng Wang, Chufan Gao, Cao Xiao, and Jimeng Sun.
Meditab: Scaling medical tabular data predictors via
data consolidation, enrichment, and refinement. arXiv
preprint arXiv:2305.12081, 2023.

[11] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang
Zhu, and Michael Zeng. Automatic prompt optimization
with” gradient descent” and beam search. arXiv preprint
arXiv:2305.03495, 2023.

[12] T Chen. Xgboost: extreme gradient boosting. R package
version 0.4-2, Vol. 1, No. 4, 2015.

[13] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei
Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Light-
gbm: A highly efficient gradient boosting decision tree.
Advances in neural information processing systems,
Vol. 30, , 2017.

[14] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. Catboost:
unbiased boosting with categorical features. Advances
in neural information processing systems, Vol. 31, ,
2018.

[15] Stefan Hegselmann, Alejandro Buendia, Hunter Lang,
Monica Agrawal, Xiaoyi Jiang, and David Sontag. Tabllm:

Few-shot classification of tabular data with large language
models. In International Conference on Artificial In-
telligence and Statistics, pp. 5549–5581. PMLR, 2023.

[16] Josh Gardner, Juan C Perdomo, and Ludwig Schmidt.
Large scale transfer learning for tabular data via language
modeling. arXiv preprint arXiv:2406.12031, 2024.

[17] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language mod-
els. arXiv preprint arXiv:2302.13971, 2023.

[18] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in neural information pro-
cessing systems, Vol. 35, pp. 24824–24837, 2022.

[19] Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia
Cherepanova, Chinmay Hegde, Frank Hutter, Micah Gold-
blum, Niv Cohen, and Colin White. Tunetables: Context
optimization for scalable prior-data fitted networks. arXiv
preprint arXiv:2402.11137, 2024.

[20] Junwei Ma, Valentin Thomas, Guangwei Yu, and Anthony
Caterini. In-context data distillation with tabpfn. arXiv
preprint arXiv:2402.06971, 2024.

[21] Andreas C Mueller, Carlo A Curino, and Raghu Ramakr-
ishnan. Mothernet: Fast training and inference via hyper-
network transformers. In NeurIPS 2024 Third Table
Representation Learning Workshop.

[22] Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas
Pfister. Large language models can automatically engineer
features for few-shot tabular learning. arXiv preprint
arXiv:2404.09491, 2024.

[23] Noah Hollmann, Samuel Müller, and Frank Hutter. Large
language models for automated data science: Introduc-
ing caafe for context-aware automated feature engineer-
ing. Advances in Neural Information Processing Sys-
tems, Vol. 36, , 2024.

[24] Shaoshan Liu, Fuyuan Lvu, Xue Liu, et al. Ice-search: A
language model-driven feature selection approach. arXiv
preprint arXiv:2402.18609, 2024.

[25] Angelica Chen, David Dohan, and David So. Evoprompt-
ing: language models for code-level neural architecture
search. Advances in Neural Information Processing
Systems, Vol. 36, , 2024.

[26] Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. An explanation of in-context learn-
ing as implicit bayesian inference. arXiv preprint
arXiv:2111.02080, 2022.

[27] Murray Shanahan, Kyle McDonell, and Laria Reynolds.
Role play with large language models. Nature, Vol. 623,
No. 7987, pp. 493–498, 2023.

[28] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba.
Large language models are human-level prompt engineers.
arXiv preprint arXiv:2211.01910, 2022.

[29] Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora,
and Christopher Ré. Can foundation models wrangle your
data? arXiv preprint arXiv:2205.09911, 2022.

― 1614 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).



A Appendix
Detailed prompt examples used for various tasks are pro-

vided. Note that text outputs from the language model re-
quire further processing to extract relevant information, yet,
for simplicity, these are omitted in the following prompts.

A.1 Zero-shot initialization

Enhance predictions for {Objective} using a
dataset: {Method of collection}.
Available attributes:

• {Column A Name}: (Numerical, range: {Min}–
{Max}), Samples: [...], {Description}

• {Column B Name}: (Boolean, {0 = X}, {1 =

Y}), Samples: [...], {Description}
• {Column C Name}: (Categorical, {1 = X}, {2
= Y}, {3 = Z}), Samples: [...], {Description}

Propose new feature combinations to improve predic-
tion performance using transformations, interactions,
aggregations, or domain knowledge. Consider com-
binations such as (Normalized A * One-Hot Encoded
C) * B. Drop redundant features if they harm model
performance. For each proposed feature, provide:

• Feature Name
• Justification: Why it improves {Objective}
• Samples

A.2 Role-play mutation and crossover

Your role is {Role}. Enhance predictions for
{Objective} using a dataset: {Method of

collection}.
You have recently tried these feature combinations
with the following validation accuracy:

• ”Norm. A”, ”One-Hot C” : {Accuracy}
• ”B”, ”One-Hot Encoded C” : {Accuracy}
• ”Norm. A”, ”B * One-Hot C” : {Accuracy}

Propose new feature combinations to improve predic-
tion performance using transformations, interactions,
aggregations, or domain knowledge. Consider com-
binations such as (Normalized A * One-Hot Encoded
C) * B. Drop redundant features if they harm model
performance. For each proposed feature, provide:

• Feature Name
• Justification: Why it improves {Objective}
• Samples: [...]

A.3 LTM evaluation

Enhance predictions for {Objective} using a
dataset: {Method of collection}.
The dataframe df is loaded. Each column corre-
sponds to an attribute:

• {Column A Name}: (Numerical, range: {Min}–
{Max}), Samples: [...], {Description}

• {Column B Name}: (Boolean, {0 = X}, {1 =

Y}), Samples: [...], {Description}
• {Column C Name}: (Categorical, {1 = X}, {2
= Y}, {3 = Z}), Samples: [...], {Description}

A data scientist has proposed creating a df with new
features useful for TabPFN predicting Objective:

• Feature name / Justification / Samples
• Feature name / Justification / Samples

Write code to generate these additional columns in df,
adhering to the feature descriptions and considering
column types and class semantics. The classifier will
train on the updated dataframe df.

A.4 Hyperparameter settings

50 iterations of random search optimized XGBoost, Cat-
Boost, and LightGBM, while AutoGluon, H2O, PyCaret,
and TabPFN were used as off-the-shelf AutoML solutions.

Table 2 Hyperparameter settings
XGBoost eta: {0.01, 0.05, 0.1}, n estimators:

{100, 200, 500}, max depth: {3, 5, 7},
subsample: {0.5, 0.8, 1}, alpha: {0,
0.1, 1}, lambda: {1, 1.5, 2}, gamma:
{0, 1, 5}, colsample bytree: {0.5, 0.7,
1}, colsample bylevel: {0.5, 0.7, 1},
min child weight: {1, 3, 5}

LightGBM num leaves: {31, 63, 127}, max depth:
{-1, 5, 10}, learning rate: {0.01, 0.05,
0.1}, min child weight: {1, 3, 5},
reg alpha: {0, 0.1, 1}, reg lambda: {1,
1.5, 2}, n estimators: {100, 200, 500},
subsample: {0.5, 0.8, 1}

CatBoost learning rate: {0.01, 0.05, 0.1},
iterations: {1000, 1500, 2000}, depth:
{6, 10, 12}, l2 leaf reg: {1, 3, 5},
border count: {32, 64, 128}, subsample:
{0.7, 0.8, 1}, random strength: {0.5, 1,
2}, bagging temperature: {0.5, 1, 2}

― 1615 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).


