
Low-Overhead Disambiguation for Generative Linguistic
Steganography via Tokenization Consistency

Ruiyi Yan Yugo Murawaki
Kyoto University

ruiyi@nlp.ist.i.kyoto-u.ac.jp murawaki@i.kyoto-u.ac.jp

Abstract
Generative linguistic steganography aims at embedding

information into natural language texts for covert transmis-
sion. However, in most tokenizer-based language model
approaches, segmentation ambiguity during extraction can
result in errors or extraction failures. Despite several ex-
isting countermeasures (or disambiguation) that have been
proposed, none address this issue from the perspective of
tokenization consistency. Specifically, previous methods
excessively modify candidate pools, compromising imper-
ceptibility or embedding capacity. To address it, we pro-
pose a stepwise tokenization-verification method which
precisely removes error tokens for each step, ensuring
100% tokenization consistency in the final output. Ex-
perimental results demonstrate that our method surpasses
baseline approaches in text quality, imperceptibility, and
anti-steganalysis capacity across various embedding rates.

1 Introduction
Linguistic steganography, a promising approach to safe-

guarding information, involves concealing messages within
text. Generative linguistic steganography (GLS) [1, 2, 3]
has emerged as a dominant technique, enabling generated
steganographic texts (referred to as stegotexts) across di-
verse genres with consistent context, high fluency, high
naturalness, high imperceptibility, and high embedding
capacity, especially with advances in large language mod-
els (LLMs) [4, 5]. However, in most existing GLS ap-
proaches (except tokenization-free methods [6, 7]), the
sender must detokenize stegotexts while the receiver must
retokenize them, leading to potential segmentation ambi-
guity [8, 9, 10, 11, 12].

Several previous prefix-based methods [9, 10, 12] have
addressed segmentation ambiguity, while the limitation of

Sender Receiver
Secret message to be

embedded: 0111… …

Language model

Candidate pool Codeword
question 00

questionnaire 01
… … 10
… … 11

Update stegotext

… …

Stegotext to be extracted:
questionnaires… …

Language model

Candidate pool Codeword
question 00

questionnaire 01
… … 10
… … 11

Segmentation ambiguity

Case 1
Case 2

Figure 1 Example for segmentation ambiguity of generating
tokens in 4-token candidate pools coded by block encoding [1],
where the receiver finds 2 tokens’ words matching the remaining
stegotext ‘questionnaire...’, respectively ‘question’ and ‘question-
naire’. Thus, there are more than one extracting cases, only one
of which is true.

them is over-preventively eliminating or merging tokens
against extraction errors, at the expense of imperceptibility,
embedding capacity, or efficiency. Motivated by achieving
100% disambiguation with minimal negative impact (low
overheads on various performances), we propose a pre-
cise disambiguating approach based on tokenization con-
sistency between the sender-receiver pair. The key idea is
that the sender runs the tokenizer during stegotext genera-
tion, pre-emptively ensuring that the receiver can replicate
the original tokens without ambiguity. The main contribu-
tions of our method are as follows:

1. We propose a stepwise tokenization-verification
method that ensures that the receiver obtains tokens identi-
cal to those generated by the sender. The receiver tokenizes
the raw stegotext into tokens, allowing the extraction pro-
cess to operate directly on tokens rather than on raw text.

2. At each generation step, through verifying and remov-
ing only those tokens that do cause tokenization inconsis-
tencies, we aim to minimize disruption to the candidate

― 2053 ―

言語処理学会 第31回年次大会 発表論文集（2025年3月）

This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

pools’ probability distribution. As token candidates are
associated with codewords, multiple calls to the tokenizer
are required. Even if this seems inefficient, ours operates
with linear complexity, and still offers some advantages
over the O(𝑛2) (at least) complexity of previous methods.

3. Experimental results show that, at medium and higher
embedding-rate intervals, our method outperforms existing
approaches, achieving at least 11.29% lower perplexity,
7.53% lower candidate-level KL divergence, and 8.07%
lower detection accuracy by steganalysis. They show low
overheads on various performances of our method.

2 Preliminaries

2.1 Notation of Linguistic Steganography

Alice (the sender) wants to communicate a secret mes-
sage 𝑚 ∼ Unif({0, 1}𝐿) with Bob (the receiver) by em-
bedding it in a choice of natural language cover text 𝑇𝑠 (a
stegotext). Alice and Bob have agreed on an embedding
function 𝑓𝑒𝑚𝑏 and an extracting function 𝑓𝑒𝑥𝑡 that perform
steganography. Alice and Bob also have access to the exact
same language model, LM𝑜, which can be used during em-
bedding and extraction. These two functions are supposed
to be invertible. In other words, 𝑓𝑒𝑚𝑏 (LM𝑜, 𝑚) = 𝑇𝑠 ,
𝑓𝑒𝑥𝑡 (LM𝑜, 𝑇𝑠) = 𝑚′, and 𝑚′ should be equal to 𝑚.

2.2 Generative Linguistic Steganography

At the micro level, during token-by-token generation,
we denote the sequence text as 𝑆𝑒𝑞 = {𝑡𝑜𝑘𝑒𝑛𝑖}𝑛𝑖=1,
where 𝑡𝑜𝑘𝑒𝑛𝑖 represents the 𝑖𝑡ℎ token in the 𝑛-token
sentences. To generate the next token (𝑡𝑜𝑘𝑒𝑛𝑛+1), the
language model predicts the candidate pool (CP) of
𝑡𝑜𝑘𝑒𝑛𝑛+1 through 𝑘 historical tokens (if any) of 𝑆𝑒𝑞,
where 𝑃(𝑡𝑜𝑘𝑒𝑛𝑛+1 |𝑡𝑜𝑘𝑒𝑛𝑛−𝑘+1, ..., 𝑡𝑜𝑘𝑒𝑛𝑛) is the transi-
tion probability. The 𝑡𝑜𝑘𝑒𝑛𝑛+1 candidate pool is: CP𝑜𝑛+1 =

{𝑐1
𝑛+1, 𝑐

2
𝑛+1, ..., 𝑐

|𝑉 |
𝑛+1} with its corresponding probability

distribution: P𝑜𝑛+1 = {𝑝1
𝑛+1, 𝑝

2
𝑛+1, ..., 𝑝

|𝑉 |
𝑛+1} where 𝑉 is the

whole vocabulary of LM𝑜, and
∑ |𝑉 |
𝑗=1 𝑝

𝑗
𝑛+1 = 1.

GLS utilizes redundancy of candidate pools to achieve
steganography. Through further sampling (e.g. top-k)
and encoding P𝑜𝑛+1 with Huffman coding [2] or arithmetic
coding [3] and so on, a steganographic candidate pool
CP𝑠𝑛+1 is obtained, with its probability distribution P𝑠𝑛+1.

At the macro level, during embedding process, the lan-
guage model in turn chooses a token in CP𝑠𝑡 (𝑡 = 1, 2, ...)

until it encodes the whole secret message; during extraction
process, the language model in turn chooses and extracts a
token in CP𝑠𝑡 (𝑡 = 1, 2, ...) till the stegotext’s end.

2.3 Segmentation Ambiguity of GLS

The stegotext generated by 𝑓𝑒𝑚𝑏 is essentially a sequence
composed of tokens. The sender must detokenize it us-
ing a tokenizer into a stegotext before transmission. As
shown in Figure 1, if the sender generates a token map-
ping to “ question” and “naire”, the sender needs to deto-
kenize them into the text “questionnaire” before sending
it to Bob. However, the issue is that common words
like “ questionnaire” often exist as independent tokens
“ question” in the model’s vocabulary as well. As a re-
sult, a single piece of text can correspond to two or even
more different token representations. Therefore, during
extraction 𝑓𝑒𝑥𝑡 (LM𝑜, 𝑇𝑠), since both “ questionnaire” and
“ question” exist in the candidate pool, Bob cannot deter-
mine which token the sender embedded the message into.
This phenomenon is referred to as segmentation ambiguity.

2.4 Related Disambiguating Approaches

Recently, several solutions have emerged to address seg-
mentation ambiguity in GLS.

1) Basic Solution: Nozaki et al. [9] proposed a simple
disambiguating approach, which removes tokens whose
mapping subwords are prefixes of others during every gen-
eration and extraction step.

2) MWIS-based Solution: Yan et al. [10] considered the
influence of removing candidate words on the probability
distributions and decided to process only if candidate-level
ambiguity occurred. Their solution identifies the max-
imum weight independent set (MWIS) in the candidate
pool to reduce probability distortion.

3) SyncPool Solution: Qi et al. [12] designed provably
secure disambiguating linguistic steganography based on
ambiguity pool grouping and synchronous sampling to ad-
dress information loss and token synchronization issues
during steganography, eliminating segmentation ambigu-
ity without altering the distribution.

3 Methodology
The differences between the previous methods and our

proposed method are outlined as follows:
1. In previous methods, the receiver performs recurrent

― 2054 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Sender

Receiver

Candidate pool Consistency?
tokenk1 ✔

tokenk2 ✔

tokenk3 ✔

tokenk4 ✘

Secret message:

1011… …

Candidate pool
token1

token2

… …
token|vocabulary|

Language model Top-k sampling (k=4)

Candidate pool Codeword

tokenk1 0

tokenk2 10

tokenk3 11

Filtering & Encoding

Selecting & Generating

tokenk2

… …

Token list

1 142 32 … 4

Token-by-token generation

Detokenizing

Tokenizing

Stegotext

“Research on biology has …”

Token list

1 142 32 … 4

Token-by-token extraction

Secret message:

1011… …

Secret message:

1011… …

Candidate pool Consistency?
tokenk1 ✔

tokenk2 ✔

tokenk3 ✔

tokenk4 ✘

Token list:

[tokenk2, …]

Candidate pool
token1

token2

… …
token|vocabulary|

Language model Top-k sampling (k=4)

Candidate pool Codeword

tokenk1 0

tokenk2 10

tokenk3 11

Filtering & Encoding

Selecting & Extracting

10

… …

Figure 2 Overview and procedures of generative linguistic steganography with our tokenization-verification approach. For some
simplicity in this example, Huffman encoding [2] and top-4 sampling in each candidate pool is adopted. Our stepwise tokenization-ver-
ification step is implemented before steganographic encoding for both the sender and receiver.

Algorithm 1 Consistency Verification for One Token
Input:
𝑡𝑜: Token to be verified;
𝐿: Previously generated token list;
Output:
𝑅𝑒𝑠𝑢𝑙𝑡: Tokenization consistency or not (True or False);

1: 𝐿𝑜 ← 𝐿.append(𝑡𝑜); /* Token list to be verified*/
2: 𝑇𝑒𝑥𝑡 ← Tokenizer.decode(𝐿𝑜);
3: 𝐿′ ← Tokenizer.encode(𝑇𝑒𝑥𝑡);
4: 𝑅𝑒𝑠𝑢𝑙𝑡 ← (𝐿𝑜 == 𝐿′);
5: return 𝑅𝑒𝑠𝑢𝑙𝑡

prefix stripping to reconstruct the token sequence, whereas
in our method, the receiver simply calls the tokenizer.

2. Previous methods are proposed because directly call-
ing the tokenizer can result in segmentation mismatches.
Our method avoids segmentation mismatches by stepwise
tokenization verification on the sender’s side.

3. Candidate pool selection in previous methods is
overly pre-emptive, while in our method it remains pre-
emptive but is more restrained.

3.1 Overall Steganographic System

Our proposed disambiguating method focuses on en-
suring tokenization consistency between the sender and
receiver while keeping all processes on candidate pools
fully accessible for extraction. As shown in Figure 2,
the tokenization-consistency verification step is placed be-

tween the sampling and steganographic encoding steps.
Both the sender and receiver can verify whether each token
in the candidate pool maintains tokenization consistency,
allowing them to perform steganographic encoding on the
same filtered candidate pools. This guarantees that the
receiver can accurately extract the secret messages.

3.2 Tokenization-Verification Method

The core challenge of this method lies in identifying
whether tokens in the candidate pool cause tokenization in-
consistency. To address this, we propose a straightforward
and lightweight approach, detailed in Algorithm 1. The
algorithm verifies the tokenization consistency for a single
token by first appending the token 𝑡𝑜 to the existing token
list 𝐿 to form 𝐿𝑜 (Line 1). Next, 𝐿𝑜 is detokenized into
a text string 𝑇𝑒𝑥𝑡 using tokenizer.decode(), and then reto-
kenized into a token list 𝐿′ using tokenizer.encode() (Line
2-3). Finally, whether 𝐿𝑜 is identical to 𝐿′ is checked,
returning a Boolean result (Line 4).

The process simulates detokenization and retokenization
of the generated stegotext transmitted from the sender to
the receiver. Tokens that cause tokenization inconsisten-
cies are removed from the candidate pool, as they could
disrupt the receiver’s extraction process. By eliminating
such problematic tokens, the approach ensures that both
the sender and receiver maintain identical token sequences,
enabling consistent and reliable steganographic extraction.

― 2055 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Table 1 Comparison among disambiguating approaches, Basic [9], MWIS [10], SyncPool [12] and our tokenization-consistency
approach in perplexity, KL divergences, steganalysis accuracy and running time (seconds) under various embedding-capacity intervals

1.0 ≤ BPT < 1.5 1.5 ≤ BPT < 2.0 2.0 ≤ BPT < 2.5 2.5 ≤ BPT < 3.0 3.0 ≤ BPT < 3.5
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 5.780 0.823 0.943 1.265 9.098 0.867 0.761 0.886 13.799 0.945 0.703 0.704 21.363 0.985 0.621 0.600 31.554 1.012 0.708 0.558
MWIS 4.662 0.590 0.855 2.930 6.758 0.567 0.648 1.747 9.218 0.506 0.635 0.835 12.963 0.453 0.583 0.731 18.169 0.432 0.750 0.810
SyncPool 8.523 0.388 0.646 4.053 12.330 0.338 0.590 2.519 17.788 0.272 0.547 1.452 23.284 0.294 0.603 0.998 33.068 0.312 0.707 0.884
Ours 4.847 0.593 0.926 3.317 6.692 0.546 0.830 2.322 9.203 0.539 0.741 1.558 12.281 0.413 0.491 0.895 16.813 0.362 0.583 0.898

3.5 ≤ BPT < 4.0 4.0 ≤ BPT < 4.5 4.5 ≤ BPT < 5.0 5.0 ≤ BPT < 5.5 5.5 ≤ BPT < 6.0
PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓ PPL↓ KLD↓ ACC↓ Time↓

Basic 44.782 1.031 0.754 0.545 62.667 1.032 0.777 0.613 94.422 1.054 0.920 1.320 131.430 1.056 0.935 1.907 183.049 1.063 0.957 3.384
MWIS 24.460 0.384 0.690 1.426 33.580 0.360 0.792 2.123 47.849 0.353 0.871 3.171 66.997 0.367 0.806 2.952 − − − −
SyncPool −
Ours 22.824 0.318 0.521 1.075 30.592 0.259 0.669 1.555 42.278 0.189 0.759 2.375 57.104 0.172 0.746 2.595 76.858 0.158 0.726 2.814

4 Experiments and Discussion

4.1 Experimental Setup

To ensure fairness, all the following GLS experiments
using various disambiguating approaches are conducted
with the same language model, llm-jp-3-1.8b1）[13], em-
bedding a random 128-bit secret message, i.e. 𝑚 ∼
Unif({0, 1}128). All methods employ arithmetic cod-
ing [3]. We compare our method with three existing dis-
ambiguating approaches ― Basic [9], MWIS [10], and
SyncPool [12] ― used as baselines. To evaluate perfor-
mance under varying embedding capacities, experiments
are conducted with different top-k sampling values (k ∈ {4,
8, 16, 32, 48, 64, 128, 256, 512, 1024, 2048, 4096}). For
each top-k value and for each disambiguating method, 500
samples are generated and collected for analysis.

4.2 Primary Metrics

Bits per token (BPT) is a fundamental metric in linguis-
tic steganography, measuring the embedding capacity. Per-
plexity (PPL) assesses the quality and fluency of the gen-
erated text. KL divergence (KLD) between modified and
original candidate pools quantifies statistical disparities, re-
flecting imperceptibility. Steganalysis accuracy (ACC) is
evaluated using a discriminator fine-tuned from bert-base-
Japanese2）, with further details provided in Appendix C.
Finally, the running time (Time, in seconds) to embed a
secret message indicates the steganographic efficiency.

4.3 Results

For each disambiguating method, experimental data
obtained under various top-k values are grouped into

1） Access: https://huggingface.co/llm-jp/llm-jp-3-1.8b
2） Access: https://github.com/cl-tohoku/bert-japanese

embedding-capacity intervals (1.0 ≤ BPT < 6.0). Ta-
ble 1 shows the average performance across these intervals
for each approach. Note that when the sample size in any
group is 20 or fewer, the data is considered insufficient and
marked as “−” in Table 1.

For experimental groups with sufficient data in
high embedding-capacity intervals (BPT ≥ 3.5), our
tokenization-consistency approach consistently achieves
the best performance in PPL, KLD, and ACC. Although
the Basic approach [9] generally demonstrates the highest
efficiency due to its lowest Time, our approach remains
competitive and even surpasses Basic when BPT exceeds
5.5. This is because, for smaller top-k candidate pools,
the detokenization and retokenization processes for each
token in candidate pools could make our method more
time-consuming than the most efficient baseline. How-
ever, when top-k candidate pools are large, our method’s
linear time complexity becomes more efficient compared
to the O(𝑛2) (at least) complexity of other methods.

Overall, as shown in Table 1, our method outperforms
the baselines from moderate to high embedding-capacity
intervals (2.0 ≤ BPT < 6.0). When compared to the best
baseline method for each metric in each interval, our ap-
proach achieves an average reduction of 11.29% in PPL,
7.53% in KLD, and 8.07% in ACC.

5 Conclusion
This paper addresses segmentation ambiguity in gen-

erative linguistic steganography from the perspective of
tokenization consistency, with the goal of minimizing the
negative impact of disambiguation. Experiments demon-
strate the advantages of our method over baselines across
various metrics. Furthermore, our proposed disambiguat-
ing approach offers generalizability to facilitate the broad
field of reliable linguistic steganography.

― 2056 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

Acknowledgment
This work was supported by JST SPRING, Grant Num-

ber JPMJSP2110.

References
[1] Tina Fang, Martin Jaggi, and Katerina Argyraki. Gen-

erating steganographic text with LSTMs. In Allyson Et-
tinger, Spandana Gella, Matthieu Labeau, Cecilia Oves-
dotter Alm, Marine Carpuat, and Mark Dredze, editors,
Proceedings of ACL 2017, Student Research Work-
shop, pp. 100–106, Vancouver, Canada, July 2017. Asso-
ciation for Computational Linguistics.

[2] Zhong-Liang Yang, Xiao-Qing Guo, Zi-Ming Chen, Yong-
Feng Huang, and Yu-Jin Zhang. Rnn-stega: Linguistic
steganography based on recurrent neural networks. IEEE
Transactions on Information Forensics and Security,
Vol. 14, No. 5, pp. 1280–1295, 2019.

[3] Zachary Ziegler, Yuntian Deng, and Alexander Rush. Neu-
ral linguistic steganography. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan, editors, Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 1210–1215, Hong Kong, China,
November 2019. Association for Computational Linguis-
tics.

[4] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language mod-
els. arXiv preprint arXiv:2302.13971, 2023.

[5] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. Qwen technical report. arXiv preprint
arXiv:2309.16609, 2023.

[6] Lingyun Xiang, Shuanghui Yang, Yuhang Liu, Qian Li,
and Chengzhang Zhu. Novel linguistic steganography
based on character-level text generation. Mathematics,
Vol. 8, No. 9, 2020.

[7] Ruiyi Yan, Tianjun Song, and Yating Yang. Token-
free: A tokenization-free generative linguistic stegano-
graphic approach with enhanced imperceptibility. Au-
thorea Preprints, 2023.

[8] Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi.
Frustratingly easy edit-based linguistic steganography with
a masked language model. In Kristina Toutanova, Anna
Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Belt-
agy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou, editors, Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pp. 5486–5492, Online, June
2021. Association for Computational Linguistics.

[9] Jumon Nozaki and Yugo Murawaki. Addressing segmenta-
tion ambiguity in neural linguistic steganography. In Yulan
He, Heng Ji, Sujian Li, Yang Liu, and Chua-Hui Chang,

editors, Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the 12th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pp. 109–116, Online only,
November 2022. Association for Computational Linguis-
tics.

[10] Ruiyi Yan, Yating Yang, and Tian Song. A secure and dis-
ambiguating approach for generative linguistic steganog-
raphy. IEEE Signal Processing Letters, Vol. 30, pp.
1047–1051, 2023.

[11] Ruiyi Yan, Tianjun Song, and Yating Yang. Segfree:
Segmentation-free generative linguistic steganographic
approach for unsegmented languages. Authorea
Preprints, 2023.

[12] Yuang Qi, Kejiang Chen, Kai Zeng, Weiming Zhang,
and Nenghai Yu. Provably secure disambiguat-
ing neural linguistic steganography. arXiv preprint
arXiv:2403.17524, 2024.

[13] Akiko Aizawa, Eiji Aramaki, Bowen Chen, Fei Cheng, Hi-
royuki Deguchi, Rintaro Enomoto, Kazuki Fujii, Kensuke
Fukumoto, Takuya Fukushima, Namgi Han, et al. Llm-
jp: A cross-organizational project for the research and
development of fully open japanese llms. arXiv preprint
arXiv:2407.03963, 2024.

[14] Falcon Dai and Zheng Cai. Towards near-imperceptible
steganographic text. In Anna Korhonen, David Traum,
and Lluı́s Màrquez, editors, Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pp. 4303–4308, Florence, Italy, July
2019. Association for Computational Linguistics.

[15] Jiaming Shen, Heng Ji, and Jiawei Han. Near-
imperceptible neural linguistic steganography via self-
adjusting arithmetic coding. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 303–313,
Online, November 2020. Association for Computational
Linguistics.

[16] A.A. Fedotov, P. Harremoes, and F. Topsoe. Refinements
of pinsker’s inequality. IEEE Transactions on Informa-
tion Theory, Vol. 49, No. 6, pp. 1491–1498, 2003.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017.

― 2057 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

A Imperceptibility of GLS
Following the previous formulation [14, 15], statisti-

cal imperceptibility refers to the similarity between the
true language model LM𝑡 in the monitored channel and
LM𝑠 which is the language model LM𝑜 integrated with
steganographic algorithms. Specifically, the total variation
distance (TVD) is used to measure statistical impercep-
tibility. Consider the TVD between LM𝑡 and LM𝑠 , i.e.
𝑑 (LM𝑡 ,LM𝑠), by triangle inequality:

𝑑 (LM𝑡 ,LM𝑠) ≤ 𝑑 (LM𝑡 ,LM𝑜), 𝑑 (LM𝑜,LM𝑠) (1)

As 𝑑 (LM𝑡 ,LM𝑜) is a criterion to measure the original lan-
guage model, which is limited by the research on language
models. Thus, 𝑑 (LM𝑜,LM𝑠) is the main focus of GLS
techniques.

According to Pinsker’s inequality [16] and additivity of
KL divergence, 𝑑 (LM𝑜,LM𝑠) can be further decomposed
in each step, that is3）:

𝑑 (LM𝑜,LM𝑠) ≤

√√
ln 2
2

∞∑
𝑡=1

𝐷𝐾𝐿 (P𝑜𝑡 | |P𝑠𝑡) (2)

where P𝑜𝑡 is the original probability distribution at 𝑡𝑡ℎ step,
and P𝑠𝑡 is transformed from P𝑜𝑡 via sampling and encoding.
Hence, GLS could aim to minimize 𝐷𝐾𝐿 (P𝑜𝑡 | |P𝑠𝑡), in order
to obtain relative near-imperceptibility.

B Computational Resources
All experiments are implemented in Python 3.12.7 with

Torch 2.5.0, running on a 2.0 GHz CPU and accelerated by
using 8× NVIDIA RTX A6000 GPUs.

C Details of Steganalysis
Positive samples are collected from stegotexts gener-

ated using various top-k samplings, while negative sam-
ples are sourced from non-steganographic texts. All texts
are generated from the same prompt, “それで”. Dur-
ing the training phase, both positive and negative samples
consist of 19,200 instances each. For testing, 4,800 un-
trained positive samples are used, categorized into different
embedding-capacity intervals as shown in Table 1. In each
embedding-capacity interval and for each disambiguating
approach, only stegotexts with a sample size greater than

3） Some derivation is omitted here, as details are verified in [14, 15,
16].

Table 2 Examples generated texts using the prompt ‘それで’
by llm-jp-3-1.8b

A stegotext generated by our proposed method
それで、この状況が起きてしまう時に最初に考え
るべきことは「リスクの洗い出し」です。リスク
が本当に想定した状況の範囲内で起き
(Perplexity = 27.778; Bits per token = 4.414)
それでいて、どこか開放的で華やかな彩のある小
物たちは、時代と共に流行り廃りはあるものの、
決して色あせない
(Perplexity = 49.150; Bits per token = 5.333)

A non-steganographic text generated
それで「次に読む本が無い問題」「読んでいる本
を人に薦める方法が無い問題」に対応するため、
(Perplexity = 16.653)
それで今は、私が好きな作家さんの作品の一部を
借りて描き出す形でご一緒しています。作品の
解釈を伝える
(Perplexity = 56.774)

20 are included in the tests; otherwise, “−” is marked to
indicate insufficient data.

Given the significant variation in the lengths of positive
samples, we adjust the negative samples to vary between
20 and 128 tokens to ensure that the trained discriminator
is not sensitive to text length. Additionally, all texts are
padded or truncated to 128 tokens, so that positive samples
cannot be distinguished as steganographic based solely on
their length. For fine-tuning the BERT model, we use
Adam [17] as the optimizer with a learning rate of 5×10−5.
The batch size is set to 2048, and the discriminator is
trained for 20 epochs, running time of the whole training
process is approximately 10 minutes.

D Text Samples
Table 2 presents examples of stegotexts generated by our

proposed method alongside non-steganographic texts, all
based on the same prompt, “それで”. Each generated
text embeds a 128-bit random secret message. Following
the approach of Ziegler et al. [3], we terminate the gen-
eration process once the proposed method has completed
embedding the message.

― 2058 ― This work is licensed by the author(s) under CC BY 4.0
 (https://creativecommons.org/licenses/by/4.0/).

