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Abstract
Existing studies investigate stereotypical biases in large

language models (LLMs) through the difference between
real-world and counterfactual data. In this case, real-world
data typically exhibit pro-stereotypical bias, while counter-
factual data rewritten by humans exhibit anti-stereotypical
bias. Due to the subjective nature of stereotypical bias
judgment, it is crucial to explain the judgment. In this
study, we aim to use LLMs to judge whether a sentence
is pro- or anti-stereotypical and explain the reason for the
judgment. We construct a stereotypical bias explanation
dataset for this goal. The experimental results show that
LLMs outperform humans in distinguishing pro- and anti-
stereotypical biases. Moreover, our constructed dataset is
highly effective in training smaller language models to gen-
erate high-quality explanations. Finally, we find that LLMs
differ from human annotations on counterfactual data than
on real-world data.

1 Introduction
Stereotypical biases in large language models (LLMs)

often rely on crowd-sourced datasets to study [1, 2]. The
sentences in these datasets are annotated or rewritten by
crowd-sourced workers as pro- or anti-stereotypical bias.
The real world data usually exhibit pro-stereotypical bias,
while counterfactual data exhibit anti-stereotypical bias.
However, recent studies [3, 4] have found no significant
difference between real-world and counterfactual data in
existing crowd-sourced datasets, raising questions about
the reliability of human annotations.

It is crucial to provide the necessary explanations to
improve the reliability of the judgment of whether a sen-

tence exhibits pro- or anti-stereotypical bias. The explain-
able natural language processing (NLP) field usually rec-
ommends writing explanations in free-form natural lan-
guage [5]. Previous studies [6, 7] have shown that we
can effectively collect textual explanations through crowd-
sourcing for simple and objective tasks (e.g., classification
tasks). However, collecting high-quality human explana-
tions is more challenging for tasks that rely on subjec-
tive judgment (e.g., stereotypical bias). Even the most
meticulous crowd-sourcing efforts often struggle to en-
sure logically consistent and grammatically correct expla-
nations [8].

Recent advances in LLMs provide a promising solution
or alternative to traditional large-scale crowd-sourcing. By
writing appropriate prompts, we can guide LLMs to gen-
erate high-quality output that significantly performs across
a range of NLP tasks [9, 10]. Furthermore, Wiegreffe et
al. [5] show that not only LLMs generate reliable explana-
tions, but also these generated explanations often outper-
form explanations written by crowd-sourced workers.

In previous explanation studies, Dalvi et al. [6] focus
on question-answering (QA) tasks, introducing entailment
trees to explain answers. Wiegreffe et al. [5] focus on
classification tasks and propose to use GPT-3 to generate
explanations for classification decisions. However, previ-
ous studies failed to consider tasks that are highly subjec-
tive (e.g., stereotypical bias). In this study, we propose
to use LLMs (e.g., GPT-4o-mini1）) to determine whether
a sentence exhibits pro- or anti-stereotypical bias and to
generate explanations.

We construct a stereotypical bias explanation dataset that
contains 7,228 sentences and the explanations of whether
they exhibit pro- or anti-stereotypical bias. Our exper-
imental results show that LLMs outperform humans in

1） https://chatgpt.com
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distinguishing pro- and anti-stereotypical biases. We also
show that smaller language models (SLMs) can learn high-
quality explanations from our dataset. In addition, we find
more significant difference between the results of LLMs
and human annotations on counterfactual data than real-
world data. This leads to concerns about the quality of
human-rewritten counterfactual data.

2 Definition
Before going into the technical details, we first define

some important terms used in this paper.

2.1 Basic Sentence

A basic sentence (e.g., People who live in trailer
parks/mansions are alcoholics) contains a demographic
word (e.g., trailer parks or mansions), and the sentence
should exhibit either pro- or anti-stereotypical bias regard-
ing that demographic word. Note that the demographic
word in basic sentence often refers to historically advan-
taged (e.g., mansions) or disadvantaged (e.g., trailer parks)
groups [2].

2.2 Pro- and Anti-stereotypical Bias

In this section, we distinguish between pro- and anti-
stereotypical bias. In StereoSet (SS) [1] and CrowS-
Pairs (CP) [2] datasets, sentences appear in pairs and have
minimal modifications to each other (only demographic
words are different). One of the sentences is from the
real world, and the other is manually rewritten counter-
factual data; both exhibit stereotypical biases. Generally,
sentences from the real world are more likely to exhibit pro-
stereotypical bias, and manually rewritten counterfactual
sentences are likely to exhibit anti-stereotypical bias. For
example, sentence pairs People who live in trailer parks are
alcoholics and People who live in mansions are alcoholics
both express stereotypical bias. The former (real-world
data) exhibit pro-stereotypical bias, and the latter (counter-
factual data) exhibit anti-stereotypical bias.

2.3 Stereotypical Bias Explanation

An explanation 𝐸𝑆 in this study is a piece of natural
language text explaining why a basic sentence 𝑆 is pro-
or anti-stereotypical bias. An explanation often includes
a judgment about whether the sentence exhibits pro- or
anti-stereotypical bias. For example, “Explanation: The

Table 1 Example of the prompt for LLMs to generate stereo-
typical bias explanations for sentences. Highlight indicates the
text generated by LLMs.

System
Judge whether the sentence exhibits pro-stereotypical or anti-
stereotypical bias; write <P> for pro-stereotypical bias and
<A> for anti-stereotypical bias after “Answer:” Then give a
specific explanation after “Explanation:”
User
Sentence: ###sentence###
Assistant:
Answer: <P>
Explanation: The sentence reinforces a negative stereotype by
suggesting that individuals who reside in trailer parks are ...

sentence reinforces a negative stereotype by suggesting that
individuals who reside in trailer parks are ...”

Even though various factors could cause bias [11], this
paper mainly focuses on biases caused by stereotypes. To
explain whether a basic sentence exhibits pro- or anti-
stereotypical bias, we define stereotypical bias explana-
tion. Stereotypical bias explanation requires an LLM 𝑀 to
generate explanation 𝐸𝑆 to explain whether a sentence 𝑆

exhibits pro- or anti-stereotypical bias. It can be denoted
as 𝐸𝑆 = 𝑀 (𝑆; 𝜃), where 𝜃 are the parameters of 𝑀 .
3 Stereotypical Bias Explanation
Generation

3.1 Basic Sentence Collection

As our basic sentences, we use sentences from two pub-
licly available crowd-sourced datasets, SS [1] and CP [2].
The datasets consist of sentence pairs where one sentence
exhibits pro- and another anti-stereotypical bias. In partic-
ular, the SS dataset contains 2,106 sentence pairs covering
four stereotypical bias types: race, profession, gender, and
religion. The CP dataset contains 1,508 sentence pairs
covering nine stereotypical bias types: race, gender, sex-
ual orientation, religion, age, nationality, disability, phys-
ical appearance, and socioeconomic status. We collect
all 7,228 sentences from SS and CP datasets as our basic
sentences.

3.2 Prompt Design

In this paper, we focus on the ability of LLMs to judge
and explain stereotypical biases. Therefore, we do not set
up various prompts to obtain multiple types of explana-
tions, and we focus only on general forms of explanations.
Specifically, the prompts are designed as shown in Ta-
ble 1. We set up system instruction for LLMs to first judge
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Figure 1 Boxplot of stereotype scores of GPT-4o-mini vs. hu-
man annotations on our dataset.

whether a sentence exhibits pro- or anti-stereotypical bias
and then generate an explanation for the judgment. In ad-
dition, we use GPT-4o-mini to generate explanations and
always output in a fixed format.

3.3 Explanation Distillation

Due to the high deployment costs of LLMs, it is essen-
tial to equip SLMs with the ability to provide explanations
for stereotypical biases. Therefore, in this paper, we adopt
a knowledge distillation approach [7] to distill stereotypi-
cal bias explanations from LLMs. Specifically, we denote
the stereotypical bias explanations generated by LLMs and
SLMs as the distribution 𝑃𝑙 and 𝑃𝑠 . Our objective func-
tion is 𝐻 (𝑃𝑙 , 𝑃𝑠) = 𝔼𝑦∼𝑃𝑙 (𝑦) [− log 𝑃𝑠 (𝑦)]. Knowledge
is transferred to SLMs by encouraging them to match the
generations of LLMs.

4 Experiments
We design experiments to test the effectiveness of our

methods toward answering three questions: RQ1: Does
GPT-4o-mini make more accurate decisions than humans?
RQ2: Can SLMs learn to generate explanations? RQ3:
How GPT-4o-mini differ from human-generated decisions?

4.1 Measure Validation (RQ1)

Method We use stereotype score [4] to evaluate
the performance of GPT-4o-mini and human annotations.
Stereotype score is a continuous value from −1 to 1 used
to indicate the stereotype of a sentence, with −1 indicating
lower stereotypes and 1 indicating higher stereotypes. We
chose RoBERTa version2）with the highest Pearson’s 𝑟 as

2） https://huggingface.co/nlply/quantifying-stereotype-roberta

Table 2 Overall performance of training SLMs to generate
explanations. Bold indicates the best performance.
Model Faithful BLEU ROUGE BERTScore

GPT-2 (124m) 77.76 9.48 20.55 85.36
OPT-125m 90.88 33.63 44.19 93.07
Bloomz-560m 81.77 13.19 25.87 88.66
OPT-350m 95.44 34.24 45.51 93.44
Phi-1.5 (1.3b) 72.38 12.54 25.15 88.66
OPT-1.3b 98.20 36.20 47.45 93.93

our scoring model.
Results Figure 1 demonstrates the difference in

stereotype scores between GPT-4o-mini and human an-
notations. Firstly, the human-annotated pro- and anti-
stereotypical samples (blue and green) have closer stereo-
type scores than GPT-4o-mini (orange and red). In ad-
dition, GPT-4o-mini-annotated pro- and anti-stereotypical
samples achieve the highest and lowest stereotype scores,
respectively. This indicates that GPT-4o-mini are more
correlated with stereotype scores than human annota-
tions. Specifically, in the stereotype scores of the human-
annotated samples, the median difference between pro-
and anti-stereotypical samples is 0.015, whereas the cor-
responding difference for GPT-4o-mini-annotated samples
is 0.079. This indicates that GPT-4o-mini exhibits a more
significant ability to distinguish between pro- and anti-
prototypical samples than humans. This also indicates that
GPT-4o-mini may be more accurate than human annota-
tion on highly subjective tasks. The results inspire future
research on the usage of LLMs in stereotypical bias anno-
tation. Please refer to Appendix A for specific bias types.

4.2 Explanation with SLMs (RQ2)

In this section, we train SLMs for stereotypical bias
explanation.

Dataset We randomly split our dataset into 8:1:1 ra-
tios for training, validation, and testing sets.

Models We use GPT-2 [9], Bloomz-560m [12], Phi-
1.5 [13], and OPT [14] models as our baseline models.
We download the weights and implementations of these
models from the Huggingface library.3）

Metrics We train a binary classification model to eval-
uate the faithfulness [15] of explanations. Specifically, we
collect 5,782 samples in the training set as positive sam-
ples and shuffle sentences and explanations to construct

3） https://huggingface.co
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5,782 negative samples. Then, we fine-tuned a RoBERTa
model for the classification task, achieving 97.93% accu-
racy on the test set. In addition, we also use BLEU [16],
ROUGE-L [17], and BERTScore [18] to evaluate the se-
mantic completeness.

Results The experimental results are shown in Ta-
ble 2. Firstly, OPT-1.3b gets the best performance on all
metrics. Secondly, all SMLs achieve high faithfulness.
However, except for OPT models, the semantic complete-
ness of the explanations generated by the other models is
relatively limited. In addition, OPT models get the best
performance in the same parameter scale.

4.3 GPT-4o-mini vs. Human (RQ3)

Figure 2 shows the comparison of GPT-4o-mini with hu-
man annotations. We found differences between GPT-4o-
mini and human-annotated samples, mainly in the coun-
terfactual data (the orange bar). Specifically, the differ-
ences between GPT-4o-mini and human annotations are
close to or greater than 50% on counterfactual data for all
bias types. This indicates that human-rewritten counter-
factual data, such as anti-stereotypical samples, may be
unreliable. Moreover, GPT-4o-mini shows significant dif-
ferences from human annotations in specific bias types,
such as nationality and physical-appearance. This indi-
cates that human-rewritten data may more likely introduce
subjective judgments on specific bias types.

5 Related Work
Stereotypical Biases in LLMs LLMs learn stereo-

typical human-like biases from human corpora. Nadeem et
al. [1] and Nangia et al. [2] evaluated social biases in LLMs
by constructing crowd-sourced datasets consisting of pro-
and anti-stereotypical sentences. Subsequently, Blodgett et
al. [3] indicated that these crowd-sourced datasets may not
effective evaluated stereotypical biases in LLMs because
of pitfall samples in these datasets. To mitigate the im-
pact caused by pitfall samples on the evaluation, Liu [19]
proposed to use the KL divergence of the Gaussian distri-
butions as the evaluation scores. Furthermore, an overview
and discussion of available datasets, evaluation methods,
and debiasing methods is available in the survey by Galle-
gos et al. [20].

Explanation Generation Early explanation
work [21] relied on supervised datasets to train ex-
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Figure 2 Comparison of GPT-4o-mini and human annotations
on specific bias types. Blue indicates pro-stereotypical samples.
Orange indicates anti-stereotypical samples. Deep indicates cases
where GPT-4o-mini equal to human annotations. Light indicates
cases where GPT-4o-mini unequal to human annotations.

planation generators. Subsequently, Rajani et al. [22]
proposed generating explanations or clarifications to
improve task performance. Dalvi et al. [6] introduced
entailment trees to explain answers to QA tasks. In
recent studies, Marasovic et al. [23] study the effect
of prompt format and model size on the plausibility of
prompted explanations based on crowd-sourced worker
annotations. Due to the excellent performance of GPT,
Wiegreffe et al. [5] proposed to use GPT-3 to generate
textual explanations for classification decisions. Their
study revealed the great potential of LLMs in generating
stereotypical bias explanations.

6 Conclusion
In this study, we use GPT-4o-mini to judge whether sen-

tences exhibit pro- or anti-stereotypical biases and generate
explanations. We find that GPT-4o-mini is more effective
than human annotations in distinguishing pro- and anti-
stereotypical bias, according to stereotype scores. In addi-
tion, SLMs can be trained to generate faithful explanations
with our dataset. We also find that the main difference
between GPT-4o-mini and human annotations is in the
counterfactual data, and we point out that human-rewritten
counterfactual data are unreliable. Our dataset will pro-
vide a valuable resource for studing generating stereotypi-
cal bias judgments and explanations with LLMs.
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A Specific Bias Types
As shown in Figure 3, GPT-4o-mini outperforms hu-

man annotations on all bias types (higher stereotype scores
for pro-stereotypical samples and lower stereotype scores
for anti-stereotypical samples). Surprisingly, the human
annotations exhibit negative correlations with stereotype
scores in the gender, socioeconomic, disability, and age
bias types. This indicates that humans face more significant
challenges in rewriting samples of these bias types. In ad-
dition, GPT-4o-mini has a larger interquartile range (IQR)
on anti-stereotypical samples in physical-appearance bias
type. This indicates that GPT-4o-mini may have difficulty
in judging physical-appearance bias type.

H (P) G (P) H (A) G (A)

0.3

0.2

0.1

0.0

0.1

profession

H (P) G (P) H (A) G (A)

0.2

0.0

0.2

race

H (P) G (P) H (A) G (A)

0.3

0.2

0.1

0.0

0.1

gender

H (P) G (P) H (A) G (A)
0.2

0.1

0.0

0.1

0.2

religion

H (P) G (P) H (A) G (A)

0.2

0.1

0.0

0.1

socioeconomic

H (P) G (P) H (A) G (A)

0.2

0.1

0.0

0.1

disability

H (P) G (P) H (A) G (A)

0.2

0.1

0.0

0.1

nationality

H (P) G (P) H (A) G (A)

0.1

0.0

0.1

sexual-orientation

H (P) G (P) H (A) G (A)

0.2

0.1

0.0

0.1
physical-appearance

H (P) G (P) H (A) G (A)

0.2

0.1

0.0

0.1

age

Figure 3 Boxplot of stereotype scores of GPT-4o-mini vs. hu-
man annotations on our dataset for specific bias types.
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