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Abstract
With the continuous breakthroughs in the capabilities of

Transformer-based models, NLP research focused on lan-
guage style, such as Text Style Transfer (TST), has gradu-
ally attracted more attention. Approaches for handling TST
tasks can generally be categorized into two main strategies:
disentanglement and entanglement. This paper proposes
a method to construct two prompting pipelines based on
these two strategies, utilizing Chain of Thought (CoT) and
Large Language Models (LLMs). We investigate the per-
formance of these pipelines on four TST sub-tasks and
analyze their improvements compared to the baseline.

1 Introduction
The text style is an intuitive notion involving how some-

thing is mentioned [1]. TST, a subset of text generation
tasks, aims to alter the style of a given text (e.g., a sentence)
while preserving its style-independent content. Depending
on the type of style being considered, TST can be viewed
as a collection of sub-tasks, such as sentiment style transfer
(SST), and formality style transfer (FST).

Approaches employing disentanglement or entangle-
ment strategies represent the dominant paradigm and an
intuitive solution in prior research on TST tasks. Here,
the disentanglement strategy assumes that the style and
content information in the source sentence can be decou-
pled. It then integrates the separated content with the target
style to produce the desired sentence. In contrast, the en-
tanglement strategy leverages the target style directly to
guide the model’s generation process. These representa-
tive works include seq2seq models trained from scratch
on non-parallel dataset [2, 3], fine-tuning pre-trained lan-
guage models by parallel dataset [4, 5, 6], and LLM-based
prompting techniques [7, 8]. In seq2seq and fine-tuned
models, disentanglement/entanglement predominantly fo-
cuses on manipulating the hidden states of input sentences.

For instance, the seq2seq model employing the disentan-
glement strategy is trained to learn disentangled representa-
tions in the latent space. Similarly, under the entanglement
strategy, the decoder integrates controllable style features
with the representations of the source sentences to generate
the target sentence.

Although previous studies have demonstrated the effec-
tiveness of their disentanglement or entanglement strate-
gies through experimental results, a systematic investiga-
tion into which strategy is more effective remains an open
problem. Furthermore, prior approaches have predomi-
nantly focused on employing a single strategy to develop
specific methods, without capitalizing on the complemen-
tary advantages of integrating both strategies. Several in-
novative approaches have also been investigated, including
methods leveraging Reinforcement Learning or attempts to
examine the underlying transfer pattern from input to tar-
get [9, 10]. Nonetheless, these efforts have not emphasized
disentanglement or entanglement strategies.

In this paper, to overcome the limitations mentioned
above, we propose two CoT pipelines using LLMs, each
of which is based on either the disentanglement or en-
tanglement strategy. To comprehensively compare the per-
formance and generalizability of each pipeline, we conduct
experiments on four TST subtasks. The main contributions
of our work are summarized as follows:

(1) We conducted a comparison of the performance of
CoT prompting methods utilizing disentanglement
and entanglement strategies.

(2) To fully harness the advantages of both strategies,
we employ an LLM-based evaluation and reranking
method, as proposed in [11], to ensemble the outputs
from the two pipelines.

(3) Extensive experiments consistently demonstrate the
effectiveness and generalizability of the various
pipeline variants.
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(a) Disentanglement pipeline

(b) Entanglement pipeline

Figure 1: Two overarching strategies for TST

2 Method

2.1 Constructing CoT Pipelines

To enhance the controllability and logical coherence of
LLMs reasoning processes, we propose our two pipelines
grounded in the CoT prompting [12], designed to ensure
robust performance across a wide range of TST subtasks.
Considering the prompting template can be directly con-
structed by Natural Language to define the expected trans-
fer, each CoT pipeline consists of two steps of prompting
which are designed by following the disentanglement and
entanglement strategies shown in (a) and (b) of Figure 1,
respectively. Let X indicate the input sentence with an
original style s (e.g. “negative”). The target style is repre-
sented by s′ (e.g. “positive”). The style to be transferred
is referred to as S (e.g. “sentiment”). For the two steps of
the disentanglement pipeline, we set the prompt templates
as follows:

Disentanglement Prompt: Here is a sentence “X”.
Please analyze which part expresses s, and which is
S-independent content.
Style Transfer Prompt: Based on the analysis, please
revise the sentence to transfer s content to s′. while
preserving the S-independent content.

Similarly, the prompt templates for the entanglement
pipeline are presented as follows:

Analysis Prompt: Here is a sentence “X”. Please
analyze the information conveyed in this sentence.

Entanglement Prompt: Based on the analysis,
please revise the sentence to express a more s′.

To this end, the disentanglement and entanglement
pipelines can be formalized as 𝑃𝑑𝑖𝑠 (X) and 𝑃𝑒𝑛𝑡 (X), re-
spectively.
2.2 Ensembling Disentanglement and

Entanglement
Considering the diversity of TST cases and the inher-

ent flexibility of natural language, we assume that relying
exclusively on either a disentanglement- or entanglement-
based CoT pipeline may not be enough to handle all sce-
narios effectively. As depicted in Figure 2, the first input
sentence can be easily decomposed into a content compo-
nent, “Ever since joes has changed hands it’s just gotten
”, and a style component, “worse and worse.”. However,
the second input sentence presents challenges in explicitly
separating content and style in natural language, as it ex-
presses sentiment implicitly, and requires more advanced
reasoning capabilities. In such cases, the entanglement-
based pipeline may achieve better results.

Figure 2: Two examples of SST.

To fully exploit the advantages of both CoT strategies,
we adopt the re-ranking method proposed by [11]. Each
generated candidate (X′) will be evaluated with a score cal-
culated by a specific function Φ(X,X′). In our work, both
CoT pipelines are applied for each input, and their outputs
are subsequently evaluated with three scores, representing
the strength of style transfer, content preservation, and flu-
ency. All three scores are multiplied to get the Φ(X,X′),
as shown in Eq.(1). Different from [11], where these three
scores are predicted by PLMs, we directly prompt LLM
to assess each score on a regularized scale from 0 to 100
which is similar to [13].

Φ(X,X′) = 𝜙𝑠 (X,X′) · 𝜙𝑐 (X,X′) · 𝜙 𝑓 (X,X′) (1)

According to Eq.(2) the candidate with the higher
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Table 1: Statistics of seven datasets for four TST subtasks
Task Dataset Size

SST

Yelp (𝑛𝑒𝑔 → 𝑝𝑜𝑠) 500
Yelp (𝑝𝑜𝑠 → 𝑛𝑒𝑔) 500

Amazon (𝑛𝑒𝑔 → 𝑝𝑜𝑠) 500
Amazon (𝑝𝑜𝑠 → 𝑛𝑒𝑔) 500

FST GYAFC 500
GST JFLEG 747
AST SHASP 599

Φ(X,X′) is regarded as the final generation, 𝐺 (X).

𝐺 (X) =

𝑃𝑑𝑖𝑠 (X) , 𝛼 ≤ 0

𝑃𝑒𝑛𝑡 (X) , 𝛼 > 0
(2)

𝛼 = Φ(X, 𝑃𝑑𝑖𝑠 (X)) −Φ(X, 𝑃𝑒𝑛𝑡 (X))

3 Experiments

3.1 Experimental Setup

We conducted experiments on four TST subtasks, i.e.,
SST, FST, grammar style transfer (GST), and authorship
style transfer (AST). The datasets, which have been cleaned
by [11], used for these tasks are briefly explained as follows:

(1) SST. We choose the annotated Yelp and Amazon test
datasets for the SST task [14], where both datasets in-
clude two subsets for transfer from negative to positive
(𝑛𝑒𝑔 → 𝑝𝑜𝑠) and vice versa (𝑝𝑜𝑠 → 𝑛𝑒𝑔).

(2) FST. Following most of the related works, we use the
GYAFC dataset collected to evaluate the performance
of each variant for the FST task [15]. We focus on the
transfer direction from informality to formality.

(3) GST. The last dataset we selected is JFLEG for the
automatic grammatical error correction task [16]. We
conducted the transfer from ungrammatical sentences
to their grammatical counterparts.

(4) AST. For the AST task, we leverage a small subset of
the dataset, proposed to translate the plays of Shake-
speare to their counterparts written in modern English
[17]. For convenience, the subset is named “SHASP”.

Since Yelp and Amazon contain two subsets for 𝑛𝑒𝑔 →
𝑝𝑜𝑠 and 𝑝𝑜𝑠 → 𝑛𝑒𝑔 tasks, respectively, all other datasets
involve single-directional transfer. In total, seven TST
datasets are used across all experiments. The statistics of
these datasets are shown in Tabel 1.

We explore four prompting variants: a straightforward
prompt serving as the baseline, disentanglement CoT, en-

tanglement CoT, and their ensembled configuration. The
experiments for each variant on the above seven datasets
are conducted by leveraging LLaMA3.2 as the backbone.
The prompt templates, designed for interacting with LLMs
to address each specific task, are detailed in our code1）.
To obtain the most accurate scores, we select LLaMA3.3
with 70 billion parameters as the scoring evaluator which
is prompted with three templates to implement the 𝜙𝑠 , 𝜙𝑐,
and 𝜙 𝑓 , respectively. The scoring prompt examples are
listed in Figures 3, 4, and 5. To focus on investigating the
disentanglement and entanglement CoTs, all inferences are
conducted in a zero-shot context. During each inference
step, the main hyperparameters are the same as the default
settings shown in Appendix, Table 3.

Five evaluation metrics are utilized to evaluate the
performance of each prompt pipeline, including ac-
curacy (Acc), reference-SacreBLEU score (r-sB), self-
SacreBLEU score (s-sB), token-level perplexity (t-PPL),
and sentence-level perplexity (s-PPL). Acc is the rate of
the output with the target style and is used to measure the
style transfer strength. Following previous work, we fine-
tuned a standard BERT-base model with the style labels of
sentences in each dataset to serve as a specific style classi-
fier for every transfer subtask. s-sB and r-sB indicate the
SacreBLEU scores between generation with the input and
annotated reference, respectively, which are calculated by
a tool2）. Here, s-sB evaluates the ability to preserve style-
independent content, and r-sB measures the overall transfer
performance. t-PPL and s-PPL represent the perplexities
of the next token predicted by a specific language model
(GPT2-large) to assess the fluency of the generated sen-
tences. t-PPL is averaged over the number of tokens, while
s-PPL is averaged over the number of sentences across the
dataset. Instead of relying on human evaluation, we use
the same LLaMA3.3 model to evaluate the performance on
these three aspects. The pre-trained parameters of BERT-
base and GPT2-large are downloaded from Huggingface3）.
Likewise, all LLMs are set up by utilizing the Ollama4）.

3.2 Results

Table 2 presents the performance of LLaMA3.2 across
seven TST datasets. Comparing the results of the five

1） https://github.com/codesedoc/CoT4TST
2） https://github.com/mjpost/sacrebleu
3） https://huggingface.co/models
4） https://ollama.com
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Table 2: Results of each pipeline across seven TST datasets by leveraging LLaMA3.2 as the backbone model. The bold
font indicates the best scores among each subgroup.

Dataset Pipeline Acc ↑ r-sB ↑ s-sB ↑ t-PPL ↓ s-PPL ↓ Style ↑ Content ↑ Fluency ↑

Yelp (𝑛𝑒𝑔 → 𝑝𝑜𝑠)

baseline 78.2 7.81 13.64 37 69 64.24 59.04 67.73
disentanglement 76.2 16.48 31.4 47 99 67.84 62.85 70.42

entanglement 76.2 8.81 14.85 32 54 63.38 57.43 66.19
ensemble 82.2 11.83 20.62 38 79 73.24 66.81 74.79

Yelp (𝑝𝑜𝑠 → 𝑛𝑒𝑔)

baseline 81.4 10.56 20.64 50 98 65.88 64.34 67.86
disentanglement 76.6 18.19 38.25 65 165 60.3 60.16 63.1

entanglement 84.8 10.89 21.01 46 98 64.28 62.14 66.75
ensemble 91.4 15.62 29.65 55 116 74.23 72.08 75.08

Amazon (𝑛𝑒𝑔 → 𝑝𝑜𝑠)

baseline 74.4 11.42 16.37 38 62 61.98 59.56 65.9
disentanglement 74.6 22.12 34.39 51 105 64.54 62.43 68.66

entanglement 77.8 9.81 15.14 32 61 65.57 57.91 67.59
ensemble 81.0 14.11 21.66 37 65 70.37 64.83 72.67

Amazon (𝑝𝑜𝑠 → 𝑛𝑒𝑔)

baseline 70.6 17.38 24.28 47 87 51.93 55.12 56.31
disentanglement 62.8 27.26 40.21 61 127 45.52 50.63 50.77

entanglement 90.4 14.82 21.21 40 76 62.23 56.17 63.37
ensemble 84.6 19.79 27.81 46 81 65.3 61.52 66.93

GYAFC

baseline 98.8 7.48 4.65 30 50 81.73 76.27 80.5
disentanglement 92.0 13.31 15.18 35 59 78.03 74.96 77.52

entanglement 98.8 3.1 2.63 25 39 73.56 60.0 69.31
ensemble 96.4 7.2 7.6 30 50 81.75 74.3 79.51

JFLEG

baseline 94.24 41.02 34.28 32 47 79.87 79.73 85.57
disentanglement 87.68 46.38 44.05 40 77 71.77 73.41 77.33

entanglement 95.18 23.57 19.78 28 46 64.89 62.8 74.83
ensemble 92.1 41.75 37.74 33 53 77.62 78.16 84.52

SHASP

baseline 97.83 4.95 4.64 39 54 59.81 64.65 65.91
disentanglement 88.15 11.05 15.45 60 95 61.8 67.42 67.45

entanglement 98.0 4.32 4.39 34 51 49.15 53.54 57.18
ensemble 94.82 8.72 10.51 47 72 63.89 69.28 70.43

automatic metrics across various pipeline variants reveals
that the disentanglement strategy consistently achieves the
highest r-sB and s-sB scores across all tasks. However, Acc
scores are consistently lower than those of the baseline. In
contrast, the entanglement strategy consistently surpasses
the baseline in Acc scores and achieves the best t-PPL and s-
PPL scores, although it performs less favorably in r-sB and
s-sB. These findings suggest that the disentanglement CoT
is particularly adept at decomposing sentence components
and generating target sentences, while the entanglement
CoT is more logically intuitive and excels at generating
more natural sentences that align with the target style.

However, based on the LLM’s scoring of the generated
sentences, the variants generally exhibit consistent perfor-
mance, either strong or weak, across the three dimensions
of style, content, and fluency. Notably, aside from the re-
sults on the Amazon dataset, neither the disentanglement
nor the entanglement strategy consistently outperforms the
baseline. This discrepancy between the LLM-based eval-
uations and the automatic metric results requires further

investigation.
A noteworthy finding is that, across all eight evaluation

metrics, the ensemble variant achieves a more balanced
trade-off between the disentanglement and entanglement
pipelines. This results in improved performance over the
baseline in terms of Acc, r-sB, and s-sB, while maintain-
ing comparable perplexity scores. From the perspective
of LLM-based evaluation, the ensemble variant even sur-
passes both CoT pipelines, demonstrating superior overall
effectiveness and outperforming the baseline in most tasks.

4 Conclusion
In this paper, we focused on investigating the perfor-

mance of the CoT prompting pipelines based on disentan-
glement and entanglement in comparison to the baseline.
Inspired by the algorithm proposed by [11], we proposed
an ensemble operation to trade off the performance of these
two pipelines. The experimental results demonstrate the
ensemble variant can achieve consistently better metrics
results on different TST tasks.
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A Experiment Setting

Figures 3, 4, and 5 illustrate the prompt templates for
LLM-based evaluation using the SST task (𝑛𝑒𝑔 → 𝑝𝑜𝑠 ) as
an example. The [𝑖𝑛𝑝𝑢𝑡], [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒], and [𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛]
in each figure represent the placeholders for each input
sentence, its corresponding annotated reference, and the
output generated by LLM, respectively. It is important to
note that reference-related content is excluded during the
ensemble operation, as the [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒] is unavailable.

system: You are a helpful assistant for evaluating the sentiment style
transfer task. The definition of this task is to revise the input sentence
to transfer negative content to positive while preserving the sentiment-
independent content.
user: Evaluate the following transfer case relative to the human ref-
erence on a continuous scale ranging from 0 to 100 points. A score
of 0 indicates “no sentiment transferred” while a score of 100 denotes
“perfect sentiment transferred”.
input sentence: [𝑖𝑛𝑝𝑢𝑡 ]
human reference: [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒]
revised sentence: [𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛]
Please only reply me the score.

Figure 3: Prompt template for evaluating the sentiment
transfer strength.

system: You are a helpful assistant for evaluating the sentiment style
transfer task. The definition of this task is to revise the input sentence
to transfer negative content to positive while preserving the sentiment-
independent content.
user: Evaluate the following transfer case relative to the human refer-
ence on a continuous scale ranging from 0 to 100 points. A score of 0
indicates “no preservation of sentiment-independent content” while a
score of 100 denotes “perfect preservation of sentiment-independent
content”.
input sentence: [𝑖𝑛𝑝𝑢𝑡 ]
human reference: [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒]
revised sentence: [𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛]
Please only reply me the score.

Figure 4: Prompt template for evaluating the capacity of
preserving content.

system: You are a helpful assistant for evaluating the sentiment style
transfer task. The definition of this task is to revise the input sentence
to transfer negative content to positive while preserving the sentiment-
independent content.
user: Evaluate the following transfer case relative to the human refer-
ence on a continuous scale ranging from 0 to 100 points. A score of
0 indicates “not fluent” while a score of 100 denotes “quite fluent”.
input sentence: [𝑖𝑛𝑝𝑢𝑡 ]
human reference: [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒]
revised sentence: [𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛]
Please only reply me the score.

Figure 5: Prompt template for evaluating the fluency.

Table 3 presents the major hyperparameters used to con-
figure the LLM for each prompting and evaluation process.

B Performance with other LLMs
To compare the performance of the two CoT pipelines

and the baseline under different LLM settings, we con-
ducted experiments on the Yelp dataset, focusing on

Table 3: Main hyperparameters for setting each LLM

Name Range Value
temperature [0, 1] 0.8

top_𝑝 [0, 1] 0.9
seed - 42

Table 4: Results of each pipeline on Yelp (𝑛𝑒𝑔 → 𝑝𝑜𝑠)
dataset, by using six different LLMs. The bold font indi-
cates the best scores among each subgroup.

Pipeline Acc ↑ r-sB ↑ s-sB ↑ t-PPL ↓ s-PPL ↓
Gemma

baseline 80.6 4.67 7.3 37 61
disentanglement 84.6 9.06 15.23 39 74

entanglement 91.4 5.32 7.16 29 42
Gemma2

baseline 74.8 6.46 10.28 46 78
disentanglement 82.8 15.04 28.12 50 100

entanglement 87.8 3.82 6.71 30 50
LLaMA2

baseline 83.2 7.56 12.73 35 64
disentanglement 74.2 13.93 26.45 49 92

entanglement 86.2 8.61 14.67 32 64
LLaMA3

baseline 87.6 7.94 12.48 48 85
disentanglement 85.0 17.62 31.59 54 111

entanglement 90.4 7.47 12.23 35 70
LLaMA3.1

baseline 78.0 9.86 17.26 45 87
disentanglement 78.4 18.7 34.59 57 117

entanglement 80.0 8.88 14.43 33 64
LLaMA3.2

baseline 78.2 7.81 13.64 37 69
disentanglement 76.2 16.48 31.4 47 99

entanglement 76.2 8.81 14.85 32 54

the transfer from negative to positive, using six distinct
LLMs including Gemma, Gemma2, LLaMA2, LLaMA3,
LLaMA3.1, and LLaMA3.2. The results of these exper-
iments on five automatic metrics are shown in Table 4.
Similar to the finding in Table 2, the disentanglement strat-
egy performs optimally in terms of r-sB and s-sB across
different LLMs, while the entanglement strategy signif-
icantly achieves the best Acc, t-PPL, and s-PPL scores.
This confirms that, compared to the baseline, the respec-
tive strengths and weaknesses of the disentanglement and
entanglement strategies exhibit generalizability across dif-
ferent LLMs.
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